Our group has used the marine bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) as a platform for the successful recombinant production of “difficult” proteins, including eukaryotic proteins, at low temperatures. However, there is still room for improvement both in the refinement of PhTAC125 expression plasmids and in the bacterium’s intrinsic ability to accumulate and handle heterologous products. Here, we present an integrated approach of plasmid design and strain engineering finalized to increment the recombinant expression and optimize the inducer uptake in PhTAC125. To this aim, we developed the IPTG-inducible plasmid pP79 and an engineered PhTAC125 strain called KrPL LacY+. This mutant was designed to express the E. coli lactose permease and to produce only a truncated version of the endogenous Lon protease through an integration-deletion strategy. In the wild-type strain, pP79 assured a significantly better production of two reporters in comparison to the most recent expression vector employed in PhTAC125. Nevertheless, the use of KrPL LacY+ was crucial to achieving satisfying production levels using reasonable IPTG concentrations, even at 0 °C. Both the wild-type and the mutant recombinant strains are characterized by an average graded response upon IPTG induction and they will find different future applications depending on the desired levels of expression.
Pseudoalteromonas haloplanktis TAC125 is among the most commonly studied bacteria adapted to cold environments. Aside from its ecological relevance, P. haloplanktis has a potential use for biotechnological applications. Due to its importance, we decided to take advantage of next generation sequencing (Illumina) and third generation sequencing (PacBio and Oxford Nanopore) technologies to resequence its genome. The availability of a reference genome, obtained using whole genome shotgun sequencing, allowed us to study and compare the results obtained by the different technologies and draw useful conclusions for future de novo genome assembly projects. We found that assembly polishing using Illumina reads is needed to achieve a consensus accuracy over 99.9% when using Oxford Nanopore sequencing, but not in PacBio sequencing. However, the dependency of consensus accuracy on coverage is lower in Oxford Nanopore than in PacBio, suggesting that a cost-effective solution might be the use of low coverage Oxford Nanopore sequencing together with Illumina reads. Despite the differences in consensus accuracy, all sequencing technologies revealed the presence of a large plasmid, pMEGA, which was undiscovered until now. Among the most interesting features of pMEGA is the presence of a putative error-prone polymerase regulated through the SOS response. Aside from the characterization of the newly discovered plasmid, we confirmed the sequence of the small plasmid pMtBL and uncovered the presence of a potential partitioning system. Crucially, this study shows that the combination of next and third generation sequencing technologies give us an unprecedented opportunity to characterize our bacterial model organisms at a very detailed level.
The Cytotoxic Necrotizing Factor 1 (CNF1) is a bacterial toxin secreted by certain Escherichia coli strains causing severe pathologies, making it a protein of pivotal interest in toxicology. In parallel, the CNF1 capability to influence important neuronal processes, like neuronal arborization, astrocytic support, and efficient ATP production, has been efficiently used in the treatment of neurological diseases, making it a promising candidate for therapy. Nonetheless, there are still some unsolved issues about the CNF1 mechanism of action and structuration probably caused by the difficulty to achieve sufficient amounts of the full-length protein for further studies. Here, we propose an efficient strategy for the production and purification of this toxin as a his-tagged recombinant protein from E. coli extracts (CNF1-H8). CNF1-H8 was expressed at the low temperature of 15°C to diminish its characteristic degradation. Then, its purification was achieved using an immobilized metal affinity chromatography (IMAC) and a size exclusion chromatography so as to collect up to 8 mg of protein per liter of culture in a highly pure form. Routine dynamic light scattering (DLS) experiments showed that the recombinant protein preparations were homogeneous and preserved this state for a long time. Furthermore, CNF1-H8 functionality was confirmed by testing its activity on purified RhoA and on HEp-2 cultured cells. Finally, a first structural characterization of the full-length toxin in terms of secondary structure and thermal stability was performed by circular dichroism (CD). These studies demonstrate that our system can be used to produce high quantities of pure recombinant protein for a detailed structural analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:150-159, 2018.
Among gliomas, primary tumors originating from glial cells, glioblastoma (GBM) identified as WHO grade IV glioma, is the most common and aggressive malignant brain tumor. We have previously shown that the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) is remarkably effective as an anti-neoplastic agent in a mouse model of glioma, reducing the tumor volume, increasing survival, and maintaining the functional properties of peritumoral neurons. However, being unable to cross the blood–brain barrier (BBB), CNF1 requires injection directly into the brain, which is a very invasive administration route. Thus, to overcome this pitfall, we designed a CNF1 variant characterized by the presence of an N-terminal BBB-crossing tag. The variant was produced and we verified whether its activity was comparable to that of wild-type CNF1 in GBM cells. We investigated the signaling pathways engaged in the cell response to CNF1 variants to provide preliminary data to the subsequent studies in experimental animals. CNF1 may represent a novel avenue for GBM therapy, particularly because, besides blocking tumor growth, it also preserves the healthy surrounding tissue, maintaining its architecture and functionality. This renders CNF1 the most interesting candidate for the treatment of brain tumors, among other potentially effective bacterial toxins.
BackgroundRecent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey.ResultsWe have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions.ConclusionsOther than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions.Electronic supplementary materialThe online version of this article (10.1186/s12934-018-0974-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.