We find conditions ensuring the existence of the outer Minkowski content for d-dimensional closed sets in R d , in connection with regularity properties of their boundaries. Moreover, we provide a class of sets (including all sufficiently regular sets) stable under finite unions for which the outer Minkowski content exists. It follows, in particular, that finite unions of sets with Lipschitz boundary and a type of sets with positive reach belong to this class.
We prove that the first (nontrivial) Dirichlet eigenvalue of the Ornstein-Uhlenbeck operatoras a function of the domain, is convex with respect to the Minkowski addition, and we characterize the equality cases in some classes of convex sets. We also prove that the corresponding (positive) eigenfunction is log-concave if the domain is convex.
Recently, several inequalities of Brunn-Minkowski type have been proved for well-known functionals in the Calculus of Variations, e.g. the first eigenvalue of the Laplacian, the Newton capacity, the torsional rigidity and generalizations of these examples. In this paper, we add new contributions to this topic: in particular, we establish equality conditions in the case of the first eigenvalue of the Laplacian and of the torsional rigidity, and we prove a Brunn-Minkowski inequality for another class of variational functionals. Moreover, we describe the links between Brunn-Minkowski type inequalities and the resolution of Minkowski type problems.
On the class of log-concave functions on R n , endowed with a suitable algebraic structure, we study the first variation of the total mass functional, which corresponds to the volume of convex bodies when restricted to the subclass of characteristic functions. We prove some integral representation formulae for such first variation, which lead to define in a natural way the notion of area measure for a log-concave function. In the same framework, we obtain a functional counterpart of Minkowski first inequality for convex bodies; as corollaries, we derive a functional form of the isoperimetric inequality, and a family of logarithmic-type Sobolev inequalities with respect to log-concave probability measures. Finally, we propose a suitable functional version of the classical Minkowski problem for convex bodies, and prove some partial results towards its solution.2010MSC : 26B25 (primary), 26D10, 52A20.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.