Over the last two decades, water smart metering programs have been launched in a number of medium to large cities worldwide to nearly continuously monitor water consumption at the single household level. The availability of data at such very high spatial and temporal resolution advanced the ability in characterizing, modeling, and, ultimately, designing user-oriented residential water demand management strategies. Research to date has been focusing on one or more of these aspects but with limited integration between the specialized methodologies developed so far. This manuscript is the first comprehensive review of the literature in this quickly evolving water research domain. The paper contributes a general framework for the classification of residential water demand modeling studies, which allows revising consolidated approaches, describing emerging trends, and identifying potential future developments. In particular, the future challenges posed by growing population demands, constrained sources of water supply and climate change impacts are expected to require more and more integrated procedures for effectively supporting residential water demand modeling and management in several countries across the world.
Understanding the tradeoff between the information of high-resolution water use data and the costs of smart meters to collect data with sub-minute resolution is crucial to inform smart meter networks. To explore this tradeoff, we first present STREaM, a STochastic Residential water End-use Model that generates synthetic water end-use time series with 10-second and progressively coarser sampling resolutions. Second, we apply a comparative framework to STREaM output and assess the impact of data sampling resolution on end-use disaggregation, leak detection, peak demand estimation, data storage, and availability. Our findings show that increased sampling resolution allows more accurate end-use disaggregation, prompt water leakage detection, and accurate and timely estimates of peak demand. Simultaneously, data storage requirements and limited product availability mean most * Corresponding author. Tel.:+39-02-2399-9040Email address: andrea.cominola@polimi.it (A. Cominola)Preprint submitted to Environmental Modelling & Software October 22, 2017 large-scale, commercial smart metering deployments sense data with hourly, daily, or coarser sampling frequencies. Overall, this work provides insights for further research and commercial deployment of smart water meters.
Retrieving the household electricity consumption at individual appliance level is an essential requirement to assess the contribution of different end uses to the total household consumption, and thus to design energy saving policies and user-tailored feedback for reducing household electricity usage. This has led to the development of nonintrusive appliance load monitoring (NIALM), or energy disaggregation, algorithms, which aim to decompose the aggregate energy consumption data collected from a single measurement point into device-level consumption estimations. Existing NIALM algorithms are able to provide accurate estimate of the fraction of energy consumed by each appliance. Yet, in the authors’ experience, they provide poor performance in reconstructing the power consumption trajectories overtime. In this brief, a new NIALM algorithm is presented, which, besides providing very accurate estimates of the aggregated consumption by appliance, also accurately characterizes the appliance power consumption profiles overtime. The proposed algorithm is based on the assumption that the unknown appliance power consumption profiles are piecewise constant overtime (as it is typical for power use patterns of household appliances) and it exploits the information on the time-of-day probability in which a specific appliance might be used. The disaggregation problem is formulated as a least-square error minimization problem, with an additional (convex) penalty term aiming at enforcing the disaggregate signals to be piecewise constant overtime. Testing on household electricity data available in the literature is reported
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.