We study a two-player zero-sum stochastic differential game with both players adopting impulse controls, on a finite time horizon. The Hamilton-Jacobi-Bellman-Isaacs (HJBI) partial differential equation of the game turns out to be a double-obstacle quasi-variational inequality, therefore the two obstacles are implicitly given. We prove that the upper and lower value functions coincide, indeed we show, by means of the dynamic programming principle for the stochastic differential game, that they are the unique viscosity solution to the HJBI equation, therefore proving that the game admits a value.
Functional Itô calculus was introduced in order to expand a functional F(t,X.+t,Xt) depending on time t, past and present values of the process X. Another possibility to expand F(t,X.+t,Xt) consists in considering the path X.+t = Xx+t, x ∈ [-T, 0] as an element of the Banach space of continuous functions on C([-T, 0]) and to use Banach space stochastic calculus. The aim of this paper is threefold. (1) To reformulate functional Itô calculus, separating time and past, making use of the regularization procedures which match more naturally the notion of horizontal derivative which is one of the tools of that calculus. (2) To exploit this reformulation in order to discuss the (not obvious) relation between the functional and the Banach space approaches. (3) To study existence and uniqueness of smooth solutions to path-dependent partial differential equations which naturally arise in the study of functional Itô calculus. More precisely, we study a path-dependent equation of Kolmogorov type which is related to the window process of the solution to an Itô stochastic differential equation with path-dependent coefficients. We also study a semilinear version of that equation
We study the large time behavior of solutions to fully nonlinear parabolic equations of Hamilton-Jacobi-Bellman type arising typically in stochastic control theory with control both on drift and diffusion coefficients. We prove that, as time horizon goes to infinity, the long run average solution is characterized by a nonlinear ergodic equation. Our results hold under dissipativity conditions, and without any nondegeneracy assumption on the diffusion term. Our approach uses mainly probabilistic arguments relying on new backward SDE representation for nonlinear parabolic, elliptic and ergodic equations.MSC Classification: 60H30, 60J60, 49J20.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.