Endophytes colonize an ecological niche similar to that of phytopathogens, which make them candidate for disease suppression. Anthracnose is a disease caused by Colletotrichum spp., a phytopathogen that can infect guarana (Paullinia cupana), an important commercial crop in the Brazilian Amazon. We investigated the diversity of endophytic bacteria inhabiting the phyllosphere of asymptomatic and symptomatic anthracnose guarana plants. The PCR-denaturation gradient gel electrophoresis (PCR-DGGE) fingerprints revealed differences in the structure of the evaluated communities. Detailed analysis of endophytic bacteria composition using culture-dependent and 16S rRNA clone libraries revealed the presence of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria phyla. Firmicutes comprised the majority of isolates in asymptomatic plants (2.40E−4). However, cloning and sequencing of 16S rRNA revealed differences at the genus level for Neisseria (1.4E−4), Haemophilus (2.1E−3) and Arsenophonus (3.6E−5) in asymptomatic plants, Aquicella (3.5E−3) in symptomatic anthracnose plants, and Pseudomonas (1.1E−3), which was mainly identified in asymptomatic plants. In cross-comparisons of the endophytic bacterial communities as a whole, symptomatic anthracnose plants contained higher diversity, as reflected in the Shannon–Weaver and Simpson indices estimation (P < 0.05). Similarly, comparisons using LIBSHUFF and heatmap analysis for the relative abundance of operational taxonomic units (OTUs) showed differences between endophytic bacterial communities. These data are in agreement with the NMSD and ANOSIM analysis of DGGE profiles. Our results suggest that anthracnose can restructure endophytic bacterial communities by selecting certain strains in the phyllosphere of P. cupana. The understanding of these interactions is important for the development of strategies of biocontrol for Colletotrichum.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-015-1037-0) contains supplementary material, which is available to authorized users.
Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.
Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.
Endophytic fungi colonize the inter- and/or intracellular regions of healthy plant tissues and have a close symbiotic relationship with their hosts. These microorganisms produce antibiotics, enzymes, and other bioactive compounds that enable them to survive in competitive habitats with other microorganisms. In addition, secondary metabolites confer protection to their host plant against other bacterial and fungal pathogens and/or can promote plant growth. Endophytic fungi are viewed as a promising source of bioactive natural products, which can be optimized through changes in growing conditions. The exploration of novel bioactive molecules produced by these microorganisms has been attracting attention from researchers. The chemical and functional diversity of natural products from endophytic fungi exhibits a broad spectrum of applications in medicine, agriculture, industry and the environment. Fungal endophytes can also enhance the photoprotective effects and photochemical efficiency in the host plants. Modern omic approaches have facilitated research investigating symbiotic plant-endophytic fungi interactions. Therefore, research on endophytic fungi can help discovery novel biomolecules for various biotechnological applications and develop a sustainable agriculture.
Aspergillus carbonarius is a potent ochratoxin A producer that has been found in products such as grapes, coffee, spices, and cocoa. Ochratoxin A has nephrotoxic effect, and it has been classified as a possible carcinogenic substance for humans. Here we describe for the first time a transformation system for A. carbonarius, providing an important step towards its genetic manipulation. Conidia were transformed to acquire hygromycin B resistance using the AGL-1 strain of Agrobacterium tumefaciens. Genetic transformation was evaluated growing A. tumefaciens cells in induction medium containing or not acetosyringone prior to co-cultivation. The mean transforming efficiencies in IM+AS and IM-AS conditions were 62.2 and 44.5 transformants per 10(5) conidia, respectively. The hph gene was random integrated into the genome of A. carbonarius. Fungal sequences flanking the insertion site could be amplified by TAIL-PCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.