This work is the first to demonstrate the ability of contactless dielectrophoresis (cDEP) to isolate target cell species from a heterogeneous sample of live cells. Since all cell types have a unique molecular composition, it is expected that their dielectrophoretic (DEP) properties are also unique. cDEP is a technique developed to improve upon traditional and insulator-based DEP devices by replacing embedded metal electrodes with fluid electrode channels positioned alongside desired trapping locations. Through the placement of the fluid electrode channels and the removal of contact between the electrodes and the sample fluid, cDEP mitigates issues associated with sample/electrode contact. MCF10A, MCF7, and MDA-MB-231 human breast cells were used to represent early, intermediate, and late-staged breast cancer, respectively. Trapping frequency responses of each cell type were distinct, with the largest difference between the cells found at 20 and 30 V. MDA-MB-231 cells were successfully isolated from a population containing MCF10A and MCF7 cells at 30 V and 164 kHz. The ability to selectively concentrate cells is the key to development of biological applications using DEP. The isolation of these cells could provide a workbench for clinicians to detect transformed cells at their earliest stage, screen drug therapies prior to patient treatment, increasing the probability of success, and eliminate unsuccessful treatment options.
We have developed a new biofabrication process in which the precise control of bacterial motion is used to fabricate customizable networks of cellulose nanofibrils. This article describes how the motion of Acetobacter xylinum can be controlled by electric fields while the bacteria simultaneously produce nanocellulose, resulting in networks with aligned fibers. Since the electrolysis of water due to the application of electric fields produces the oxygen in the culture media far from the liquid-air boundary, aerobic cellulose production in 3D structures is readily achievable. Five separate sets of experiments were conducted to demonstrate the assembly of nanocellulose by A. xylinum in the presence of electric fields in micro- and macro-environments. This study demonstrates a new concept of bottom up material synthesis by the control of a biological assembly process.
Selective separation and isolation of microparticles or cells based on their biophysical properties has become an essential step in laboratory use [1]. Techniques include field flow fractionation [2], fluorescent and magnetic activated cell sorting [3], laser tweezers [4] and dielectrophoresis [5]. The latter technique uses a particle’s intrinsic properties to its advantage without altering the original structure or disrupting the viability of the cell which is highly attractive for cancer research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.