Abstract. The genus Actenodia Laporte de Castelnau (Meloidae: Mylabrini) is revised. It includes 18 species distributed in the Mediterranean and SaharoArabian regions, and in eastern and southern Africa; A. carpanetoi sp.n. from Mozambique is described. The bionomics of the genus is summarized, according to a collection of records on phenology, elevation, habitat preference and host plants.
TAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP-43 exists as a full-length protein and as two shorter forms of 25 and 35 kDa. Full-length mutant TDP-43s found in amyotrophic lateral sclerosis patients re-localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP-43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kDa truncated form of TDP-43 is restricted to the intermembrane space, while the full-length forms also localize in the mitochondrial matrix in cultured neuronal NSC-34 cells. Interestingly, the full-length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial-transcribed mRNAs, while the 35 kDa form does not. In the light of the known differential contribution of the full-length and short isoforms to generate toxic aggregates, we propose that the presence of full-length TDP-43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP-43 forms play a major role.
The first-instar larva of the genus Arthropterus W.S. MacLeay, 1838 is described and illustrated. This is the first description of a newly hatched (first-instar) larva in the myrmecophilous tribe Paussini and the first known larva from a basal paussine lineage. A phylogenetic analysis of the subfamily based on larval characters confirms the placement of the genus Arthropterus as a sister-group of the remaining Paussini and supports the hypothesis that Metriini is the sister-group of Ozaenini+Paussini, with 'Ozaenini' as a paraphyletic group. Within this phylogenetic framework, we reassess which larval characters are diagnostic of the tribes Paussini and Ozaenini. Several larval features of Arthropterus, such as the riddled sensilla S-VIII and the fused terminal disk, are interpreted as adaptations to myrmecophily. This interpretation supports the hypothesis that larvae have played an important role in the evolution of myrmecophily within the subfamily Paussinae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.