The nucleoprotein (NP) of Marburg virus (MARV) is responsible for the encapsidation of viral genomic RNA and the formation of the helical nucleocapsid precursors that accumulate in intracellular inclusions in infected cells. To form the large helical MARV nucleocapsid, NP needs to interact with itself and the viral proteins VP30, VP35 and L, which are also part of the MARV nucleocapsid. In the present study, a conserved coiled coil motif in the central part of MARV NP was shown to be an important element for the interactions of NP with itself and VP35, the viral polymerase cofactor. Additionally, the coiled coil motif was essential for the formation of NPinduced intracellular inclusions and for the function of NP in the process of transcription and replication of viral RNA in a minigenome system. Transfer of the coiled coil motif to a reporter protein was sufficient to mediate interaction of the constructed fusion protein with the N-terminus of NP. The coiled coil motif is bipartite, constituted by two coiled coils which are separated by a flexible linker.
Phosphorylation of the Marburg virus nucleoprotein NP is distributed over 7 regions (I-VII) in its C-terminus. The exact localization of phosphorylated amino acids and function of NP phosphorylation are unknown. Here, we show that the major phosphate acceptor sites in NP region II are serine 446 and serines 453-455; the latter are located in a cluster of 6 serine residues (aa 450-455). The function of phosphorylation in region II was tested using an infectious virus-like particle assay. Phosphorylation influenced reporter gene activity that reflects viral transcription and replication. An NP mutant mimicking 3 phosphorylated serine residues at position 453-455 supported reporter gene activity better than wild-type NP. Negative charges at positions 450-452 and when the serine cluster was completely substituted by alanine inhibited reporter gene activity significantly. These data support the idea that phosphorylation of NP region II modulates viral RNA synthesis in transcription and/or replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.