Nepal's quake-driven landslide hazards Large earthquakes can trigger dangerous landslides across a wide geographic region. The 2015 M w 7.8 Gorhka earthquake near Kathmandu, Nepal, was no exception. Kargal et al. used remote observations to compile a massive catalog of triggered debris flows. The satellite-based observations came from a rapid response team assisting the disaster relief effort. Schwanghart et al. show that Kathmandu escaped the historically catastrophic landslides associated with earthquakes in 1100, 1255, and 1344 C.E. near Nepal's second largest city, Pokhara. These two studies underscore the importance of determining slope stability in mountainous, earthquake-prone regions. Science , this issue p. 10.1126/science.aac8353 ; see also p. 147
We estimate the velocity field in central and southern Calitbrnia using Global Positioning System (GPS) observations from 1986 to 1902 and very long baseline interferometry (VLB!) observations from 1984 to 1991. Our core network includes 12 GPS sites spaced approximately 50 km apart, mostly in the western Transverse Ranges and the coastal Borderlands. The precision and accuracy of the relative horizontal velocities estimated for these core stations are adequately described by a 05% confidence ellipse with a semiminor axis of approximately 2 mm/yr oriented roughly north-south, and a semimajor axis of approximately 3 mm/yr oriented east-west. For other stations, occupied fewer than 5 times, or occupied during experiments with poor tracking geometries, the uncertainty is larger. These uncertainties are calibrated by analyzing the scatter in three types of comparisons: (1) multiple measurements of relative position ("repeatability"), (2) independent velocity estimates from separate analyses of the GPS and VLBi data, and (3) rates of change in baseline length estimated t¾om the joint GPS+VLB! solution and from a comparison of GPS with trilateration. The dominant tectonic signature in the velocity field is shear deformation associated with the San Andreas and Garlock faults, which we model as resulting from slip below a given locking depth. Removing the effects of this simple model l¾om the observed velocity field reveals residual deformation that is not attributable to the San Andreas fault. Baselines spanning the eastern Santa Barbara Channel, the Ventura basin, the Los Angeles basin, and the Santa Maria Fold and Thrust Belt are shortening at rates of up to 5 _.+ I, 5 _.+ I, 5 _.+ 1, and 2 _.+ I mm/yr, respectively. North of Ihe Big Bend, some compression normal to the trace of the San Andreas fault can be resolved on both sides of the fault. The rates of rotation about vertical axes in the residual geodetic velocity field differ by up to a factor of 2 from those inferred from paleomagnctic declinations. Our estimates indicate that the "San Andreas discrepancy" can be resolved to within the 3 mm/yr uncertainties by accounting for deformation in California between Vandenberg (near Point Conception) and the westernmost Basin and Range. Strain accumulation of I-2 mm/yr on structures offshore of Vandenberg is also allowed by the uncertainties. South of the Transverse Ranges, the deformation budget must include 5 mm/yr between the ofl•horc islands and the mainland. INTRODU(q'!ONDetermining the velocity field in the vicinity of the Pacific-North America plate boundary in central and southern Calitbrnia (Figure 1) is a long-standing problem in tectonics. While most of the motion between these plates occurs on the San Andreas fault, the deformation extends for a substantial distance on either side of this structure. Such off-fault deformation is evident in geologic structures, seismicity, paleomagnetic declinations, and geodetic networks. Measuring that deformation with space geodesy is the primary objective of this study, w...
Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least~20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(n < n(t)) for the current count n(t) for the small earthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(n < n(t)). EPS is therefore the current level of hazard and assigns a number between 0% and 100% to every region so defined, thus providing a unique measure. Physically, the EPS corresponds to an estimate of the level of progress through the earthquake cycle in the defined region at the current time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.