Leukocytosis is associated with increased cardiovascular disease risk in humans and develops in hypercholesterolemic atherosclerotic animal models. Leukocytosis is associated with the proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) in mice with deficiencies of the cholesterol efflux-promoting ABC transporters ABCA1 and ABCG1 in BM cells. Here, we have determined the role of endogenous apolipoprotein-mediated cholesterol efflux pathways in these processes. In Apoe -/-mice fed a chow or Western-type diet, monocytosis and neutrophilia developed in association with the proliferation and expansion of HSPCs in the BM. In contrast, Apoa1 -/-mice showed no monocytosis compared with controls. ApoE was found on the surface of HSPCs, in a proteoglycan-bound pool, where it acted in an ABCA1-and ABCG1-dependent fashion to decrease cell proliferation. Accordingly, competitive BM transplantation experiments showed that ApoE acted cell autonomously to control HSPC proliferation, monocytosis, neutrophilia, and monocyte accumulation in atherosclerotic lesions. Infusion of reconstituted HDL and LXR activator treatment each reduced HSPC proliferation and monocytosis in Apoe -/-mice. These studies suggest a specific role for proteoglycanbound ApoE at the surface of HSPCs to promote cholesterol efflux via ABCA1/ABCG1 and decrease cell proliferation, monocytosis, and atherosclerosis. Although endogenous apoA-I was ineffective, pharmacologic approaches to increasing cholesterol efflux suppressed stem cell proliferative responses.
Early detection of colorectal cancer (CRC) is currently based on fecal occult blood testing (FOBT) and colonoscopy, both which can significantly reduce CRC-related mortality. However, FOBT has low-sensitivity and specificity, whereas colonoscopy is labor-and cost-intensive. Therefore, the discovery of novel biomarkers that can be used for improved CRC screening, diagnosis, staging and as targets for novel therapies is of utmost importance. To identify novel CRC biomarkers we utilized representational difference analysis (RDA) and characterized a colon cancer associated transcript (CCAT1), demonstrating consistently strong expression in adenocarcinoma of the colon, while being largely undetectable in normal human tissues (p < 000.1). CCAT1 levels in CRC are on average 235-fold higher than those found in normal mucosa. Importantly, CCAT1 is strongly expressed in tissues representing the early phase of tumorigenesis: in adenomatous polyps and in tumor-proximal colonic epithelium, as well as in later stages of the disease (liver metastasis, for example). In CRC-associated lymph nodes, CCAT1 overexpression is detectable in all H&E positive, and 40.0% of H&E and immunohistochemistry negative lymph nodes, suggesting very high sensitivity. CCAT1 is also overexpressed in 40.0% of peripheral blood samples of patients with CRC but not in healthy controls. CCAT1 is therefore a highly specific and readily detectable marker for CRC and tumor-associated tissues.Colorectal cancer (CRC) is a common disease affecting over a million people annually, worldwide. 1 Novel cytotoxic agents alone or in combination with targeted systemic therapy significantly improve median survival in patients with advanced or metastatic CRC. These adjuvant therapeutic agents reduce the risk of disease-recurrence in patients who undergo complete resection of CRC, but are at high risk of disease relapse. Despite major advances in systemic therapy for CRC, nearly 50% of patients diagnosed with this common malignancy will recur and die of disease within 5 years of diagnosis and treatment with curative intent. 2 To improve overall outcome of this disease, prevention and early detection through effective screening methods are imperative.Current CRC screening and diagnosis is based mainly on fecal occult blood testing (FOBT) and fiber-optic colonoscopy, both which have demonstrated clinical utility and efficacy in early diagnosis and reduction of CRC-related mortality. 3,4 Recently, stool-based DNA assays were developed for
Cholesterol accumulation in myeloid cells activates the NLRP3 inflammasome, which enhances neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques. Patients with Tangier disease, who have increased myeloid cholesterol content, showed markers of inflammasome activation, suggesting human relevance.
Although recent genome-wide association studies have called into question the causal relationship betweenhigh-density lipoprotein (HDL) cholesterol levels and cardiovascular disease, ongoing research in animals and cells has produced increasing evidence that cholesterol efflux pathways mediated by ATP-binding cassette (ABC) transporters and HDL suppress atherosclerosis. These differing perspectives may be reconciled by a modified HDL theory that emphasizes the antiatherogenic role of cholesterol flux pathways, initiated in cells by ABC transporters. ABCA1 and ABCG1 control the proliferation of hematopoietic stem and multipotential progenitor cells in the bone marrow and hematopoietic stem and multipotential progenitor cell mobilization and extramedullary hematopoiesis in the spleen. Thus, activation of cholesterol efflux pathways by HDL infusions or liver X receptor activation results in suppression of hematopoietic stem and multipotential progenitor cell mobilization and extramedullary hematopoiesis, leading to decreased production of monocytes and neutrophils and suppression of atherosclerosis. In addition, macrophage-specific knockout of transporters has confirmed their role in suppression of inflammatory responses in the arterial wall. Recent studies have also shown that ABCG4, a close relative of ABCG1, controls platelet production, atherosclerosis, and thrombosis. ABCG4 is highly expressed in megakaryocyte progenitors, where it promotes cholesterol efflux to HDL and controls the proliferative responses to thrombopoietin. Reconstituted HDL infusions act in an ABCG4-dependent fashion to limit hypercholesterolemia-driven excessive platelet production, thrombosis, and atherogenesis, as occurs in human myeloproliferative syndromes. Activation of ABC transporterdependent cholesterol efflux pathways in macrophages, hematopoietic stem and multipotential progenitor cells, or platelet progenitors by reconstituted HDL infusion or liver X receptor activation remain promising approaches to the treatment of human atherothrombotic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.