Background Even before the onset of age-related diseases, obesity might be a contributing factor to the cumulative burden of oxidative stress and chronic inflammation throughout the life course. Obesity may therefore contribute to accelerated shortening of telomeres. Consequently, obese persons are more likely to have shorter telomeres, but the association between body mass index (BMI) and leukocyte telomere length (TL) might differ across the life span and between ethnicities and sexes. Objective A collaborative cross-sectional meta-analysis of observational studies was conducted to investigate the associations between BMI and TL across the life span. Design Eighty-seven distinct study samples were included in the meta-analysis capturing data from 146,114 individuals. Study-specific age- and sex-adjusted regression coefficients were combined by using a random-effects model in which absolute [base pairs (bp)] and relative telomere to single-copy gene ratio (T/S ratio) TLs were regressed against BMI. Stratified analysis was performed by 3 age categories (“young”: 18–60 y; “middle”: 61–75 y; and “old”: >75 y), sex, and ethnicity. Results Each unit increase in BMI corresponded to a −3.99 bp (95% CI: −5.17, −2.81 bp) difference in TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a −7.67 bp (95% CI: −10.03, −5.31 bp) difference. Each unit increase in BMI corresponded to a −1.58 × 10−3 unit T/S ratio (0.16% decrease; 95% CI: −2.14 × 10−3, −1.01 × 10−3) difference in age- and sex-adjusted relative TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a −2.58 × 10−3 unit T/S ratio (0.26% decrease; 95% CI: −3.92 × 10−3, −1.25 × 10−3). The associations were predominantly for the white pooled population. No sex differences were observed. Conclusions A higher BMI is associated with shorter telomeres, especially in younger individuals. The presently observed difference is not negligible. Meta-analyses of longitudinal studies evaluating change in body weight alongside change in TL are warranted.
The Metabolic Syndrome (MetS) is a cluster of cardiometabolic risk factors, usually accompanied by the presence of insulin resistance (IR) and a systemic subclinical inflammation state. Metabolically healthy obese (MHO) individuals seem to be protected against cardiometabolic complications. The aim of this work was to characterize phenotypically the low-grade inflammation and the IR in MHO individuals in comparison to obese individuals with MetS and control non obese. We studied two different populations: 940 individuals from the general population of Buenos Aires and 518 individuals from the general population of Venado Tuerto; grouped in three groups: metabolically healthy non-obese individuals (MHNO), MHO and obese individuals with MetS (MSO). Inflammation was measured by the levels of hs-CRP (high-sensitivity C reactive protein), and we found that MHO presented an increase in inflammation when compared with MHNO (Buenos Aires: p<0.001; Venado Tuerto: p<0.001), but they did not differ from MSO. To evaluate IR we analyzed the HOMA (Homoeostatic Model Assessment) values, and we found differences between MHO and MSO (Buenos Aires: p<0.001; Venado Tuerto: p<0.001), but not between MHNO and MHO. In conclusion, MHO group would be defined as a subgroup of obese individuals with an intermediate phenotype between MHNO and MSO individuals considering HOMA, hs-CRP and central obesity.
To evaluate Interleukin 1-beta (IL-1β) serum and mononuclear leucocyte mRNA levels, also rs16944 (−511C/T) genotype, in relation to hyperglycemic normalization in Type 2 diabetes (T2D) patients, we recruited 30 individuals recently T2D diagnosed with hyperglycemia studied at basal time and after 6 and 12 months of the normalization treatment. At basal time, the T polymorphic allele of the rs16944 was associated with lower IL-1β mRNA expression (p = 0.006); and higher glucose level was positive correlated to IL-1β protein levels (p = 0.015). After treatment, the individuals showed a significant decrease in glucose level (p = 0.003), but they did not express significant changes in the IL-1β serum levels. Surprisingly, we observed that the greater decreases in glucose level were associated to increased IL-1β serum levels (p = 0.040). This is the first follow-up study evaluating IL-1β mRNA expression and serum levels in hyperglycemic T2D individuals and after glycemic normalization treatment. The current results contribute to the knowledge of the relationship between inflammation and glucose metabolism in T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.