AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electron microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. However, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.
Additive manufacturing (AM) allows agile, rapid manufacturing of geometrically complex components that would otherwise be impossible through traditional manufacturing methods. With this maturing manufacturing technology comes the need to adopt testing methods that are commensurate with the speed of additive manufacturing and take advantage of its geometric flexibility. High-throughput tensile testing (HTT) is a technique that allows a large number of tensile bars to be tested in a short amount of time. In the present study, HTT is used to evaluate AM AlSi10Mg produced using powder bed fusion with a Renishaw AM250 machine. Three parameters were varied in this study: (1) powder reuse history, (2) location on the build plate, and (3) size of the tensile specimen. For all parameter combinations, at least 22 specimens were tested; in several cases, over 40 were tested. This large dataset, consisting of over 500 tensile tests, permits Weibull statistical analysis and provides sufficient fidelity to isolate subtle trends that would have likely been missed in smaller, traditional datasets. The observed trends are rationalized in terms of the role of porosity and surface crust on mechanical response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.