Retinoids regulate many biological processes, including differentiation, morphogenesis and cell proliferation. They are also important therapeutic agents, but their clinical usefulness is limited because of side effects. Retinoid activities are mediated by specific nuclear receptors, the RARs and RXRs, which can induce transcriptional activation through specific DNA sites or by inhibiting the transcription factor AP-1 (refs 12-15), which usually mediates cell proliferation signals. Because the two types of receptor actions are mechanistically distinct, we investigated whether conformationally restricted retinoids, selective for each type of receptor action, could be identified. Here we describe a new class of retinoids that selectively inhibits AP-1 activity but does not activate transcription. These retinoids do not induce differentiation in F9 cells but inhibit effectively the proliferation of several tumour cell lines, and could thus serve as candidates for new retinoid therapeutic agents with reduced side effects.
Retinoids have a broad spectrum of biological activities and are useful therapeutic agents. Their physiological activities are mediated by two types of receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). RARs, as well as several related receptors, require heterodimerization with RXRs for effective DNA binding and function. However, in the presence of 9-cis-retinoic acid, a ligand for both RARs and RXRs, RXRs can also form homodimers. A series of retinoids is reported that selectively activates RXR homodimers but does not affect RAR-RXR heterodimers and thus demonstrates that both retinoid response pathways can be independently activated.
The current paradigm of cancer care relies on predictive nomograms which integrate detailed histopathology with clinical data. However, when predictions fail, the consequences for patients are often catastrophic, especially in prostate cancer where nomograms influence the decision to therapeutically intervene. We hypothesized that the high dimensional data afforded by massively parallel sequencing (MPS) is not only capable of providing biological insights, but may aid molecular pathology of prostate tumours. We assembled a cohort of six patients with high-risk disease, and performed deep RNA and shallow DNA sequencing in primary tumours and matched metastases where available. Our analysis identified copy number abnormalities, accurately profiled gene expression levels, and detected both differential splicing and expressed fusion genes. We revealed occult and potentially dormant metastases, unambiguously supporting the patients’ clinical history, and implicated the REST transcriptional complex in the development of neuroendocrine prostate cancer, validating this finding in a large independent cohort. We massively expand on the number of novel fusion genes described in prostate cancer; provide fresh evidence for the growing link between fusion gene aetiology and gene expression profiles; and show the utility of fusion genes for molecular pathology. Finally, we identified chromothripsis in a patient with chronic prostatitis. Our results provide a strong foundation for further development of MPS-based molecular pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.