Volterra processes appear in several applications ranging from turbulence to energy finance where they are used in the modelling of e.g. temperatures and wind and the related financial derivatives. Volterra processes are in general non-semimartingales and a theory of integration with respect to such processes is in fact not standard. In this work we suggest to construct an approximating sequence of Lévy driven Volterra processes, by perturbation of the kernel function. In this way, one can obtain an approximating sequence of semimartingales.Then we consider fractional integration with respect to Volterra processes as integrators and we study the corresponding approximations of the fractional integrals. We illustrate the approach presenting the specific study of the Gamma-Volterra processes. Examples and illustrations via simulation are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.