Nuclear Power Plants (NPPs) have been historically deployed to cover the base-load of the electricity demand. Nowadays some NPPs might perform daily load cycling operation (i.e. load following) between 50% and 100% of their rated power. With respect to the insertion of control rods or comparable action to reduce the nuclear power generation, a more L F C of power, respect to the electricity demand, to an auxiliary system. A suitable cogeneration system needs:1. To have a demand of electricity and/or heat in the region of 500 MWt 1 GWt;2. To meet a significant market demand;3. To have access to adequate input to process; 4. To be flexible: cogeneration might operate at full load during the night when the request (of) for electricity is low, and be turned off during the daytime.From the economic standpoint, it is essential that the investment in the auxiliary system is profitable. This paper provides a techno-economic assessment of systems suitable for coupling with a NPP for load following. The results show that district heating, desalination and hydrogen might be technically and economically feasible.
Nuclear Power Plants (NPPs) has been historically deployed to cover the base-load of the electric power demand. Nowadays this scenario is changing and some NPPs are requested to perform daily load cycling operation (i.e. load following) between 50% and 100% of their rated power. The traditional methods to perform the load following are by inserting negative or positive reactivity into the core, moving the control rods. This strategy reduces the produced thermal power and in turn the electric power output with respect to the base-load strategy. From a technical standpoint this strategy submits the primary circuit to thermodynamic transients, which causes thermomechanical stresses on some components. From an economic standpoint this operation is very inefficient since, in NPPs, costs are mainly fixed and sunk, and there is a negligible cost saving (if any) in reducing the power of the reactor. A more efficient alternative might be doing the “Load Following by Cogeneration”, i.e. performing the Load Following by diverting the excess of power to an Auxiliary Plant. This paper assesses the technical feasibility of the coupling between a NPP and hypothetical cogenerate plants producing: diesel-like fuels from plastic pyrolysis, or desalinated water, or pellets from waste wood, or hydrogen from water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.