Background Few small studies have described hospital-acquired infections (HAIs) during COVID-19. Research Question What patient characteristics in critically ill patients with COVID-19 are associated with HAIs and how do HAIs associate with outcomes in these patients? Study Design and Methods Multicenter retrospective analysis of prospectively collected data including adult patients with severe COVID-19, admitted to 8 Italian hub hospitals from February 20, 2020, to May 20, 2020. Descriptive statistics, univariable and multivariable Weibull regression models were used to assess incidence, microbial etiology, resistance patterns, risk factors (i.e., demographics, comorbidities, exposure to medication), and impact on outcomes (i.e., ICU survival, length of ICU and hospital stay and duration of mechanical ventilation) of microbiologically-confirmed HAIs. Results Of the 774 included patients, 359 (46%) patients developed 759 HAIs (44.7 infections/1000 ICU patient-days, 35% multi-drug resistant (MDR) bacteria). Ventilator-associated pneumonia (VAP) (389, 50%), bloodstream infections (183, 34%), and catheter related blood stream infections (74, 10%) were the most frequent HAIs, with 26.0 (23.6-28.8) VAPs/1000 patient intubation-days, 11.7(10.1-13.5) BSIs/1000 ICU patient-days, and 4.7 (3.8-5.9) CRBSIs/1000 patient-days. Gram-negative bacteria (especially Enterobacterales ) and Staphylococcus aureus caused 64% and 28% of VAPs. Variables independently associated with infection were age, PEEP and treatment with broad-spectrum antibiotic at admission. 234 patients (30%) died in ICU (15.3 deaths/1000 ICU patient-days). Patients with HAIs complicated by septic shock had almost doubled mortality (52% vs. 29%), while non-complicated infections did not affect mortality. HAIs prolonged mechanical ventilation (24(14-39) vs. 9(5-13) days; p<0.001), ICU and hospital stay (24(16-41) vs. 9(6-14) days, p=0.003; and (42(25-59) vs. 23(13-34) days, p<0.001). Interpretation Critically-ill COVID-19 patients are at high risk for HAIs, especially VAPs and BSIs due to MDR organisms. HAIs prolong mechanical ventilation and hospitalization, and HAIs complicated by septic-shock almost doubled mortality.
Background Limited data are available on the use of prone position in intubated, invasively ventilated patients with Coronavirus disease-19 (COVID-19). Aim of this study is to investigate the use and effect of prone position in this population during the first 2020 pandemic wave. Methods Retrospective, multicentre, national cohort study conducted between February 24 and June 14, 2020, in 24 Italian Intensive Care Units (ICU) on adult patients needing invasive mechanical ventilation for respiratory failure caused by COVID-19. Clinical data were collected on the day of ICU admission. Information regarding the use of prone position was collected daily. Follow-up for patient outcomes was performed on July 15, 2020. The respiratory effects of the first prone position were studied in a subset of 78 patients. Patients were classified as Oxygen Responders if the PaO2/FiO2 ratio increased ≥ 20 mmHg during prone position and as Carbon Dioxide Responders if the ventilatory ratio was reduced during prone position. Results Of 1057 included patients, mild, moderate and severe ARDS was present in 15, 50 and 35% of patients, respectively, and had a resulting mortality of 25, 33 and 41%. Prone position was applied in 61% of the patients. Patients placed prone had a more severe disease and died significantly more (45% vs. 33%, p < 0.001). Overall, prone position induced a significant increase in PaO2/FiO2 ratio, while no change in respiratory system compliance or ventilatory ratio was observed. Seventy-eight % of the subset of 78 patients were Oxygen Responders. Non-Responders had a more severe respiratory failure and died more often in the ICU (65% vs. 38%, p = 0.047). Forty-seven % of patients were defined as Carbon Dioxide Responders. These patients were older and had more comorbidities; however, no difference in terms of ICU mortality was observed (51% vs. 37%, p = 0.189 for Carbon Dioxide Responders and Non-Responders, respectively). Conclusions During the COVID-19 pandemic, prone position has been widely adopted to treat mechanically ventilated patients with respiratory failure. The majority of patients improved their oxygenation during prone position, most likely due to a better ventilation perfusion matching. Trial registration: clinicaltrials.gov number: NCT04388670
The IL-1 receptor antagonist, anakinra, may represent a therapeutic option for acute respiratory distress syndrome (ARDS) associated with coronavirus disease 2019 (COVID-19). In this study, COVID-19 ARDS patients admitted to the Azienda Socio Sanitaria Territoriale of Lecco, Italy, between March 5th to April 15th, 2020, and who had received anakinra off-label were retrospectively evaluated and compared with a cohort of matched controls who did not receive immunomodulatory treatment. The primary end point was survival at day 28. The population consisted of 112 patients (56 treated with anakinra and 56 controls). Survival at day 28 was obtained in 69 patients (61.6%) and was significantly higher in anakinra-treated patients than in the controls (75.0 versus 48.2%, p = 0.007). When stratified by continuous positive airway pressure support at baseline, anakinra-treated patients’ survival was also significant compared with the controls (p = 0.008). Univariate analysis identified anakinra usage (odds ratio, 3.2; 95% confidence interval, 1.47–7.17) as a significant survival predictor. This was not supported by multivariate modeling. The rate of infectious-related adverse events was similar between groups. In conclusion, anakinra improved overall survival and invasive ventilation-free survival and was well tolerated in patients with ARDS associated with COVID-19.
ImportanceData on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2–related pneumonia are scarce.ObjectiveTo evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU.Design, Setting, and ParticipantsThis retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021.ExposuresCOVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine).Main Outcomes and MeasuresThe incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders.ResultsAmong the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] age was 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dose was 0.03 (95% CI, 0.03-0.04; P &lt; .001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P &lt; .001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P &lt; .001), primarily male individuals (110 patients [79.1%] vs 252 patients [60.9%]; P &lt; .001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P &lt; .001) and had higher ratio of arterial partial pressure of oxygen (Pao2) and fraction of inspiratory oxygen (FiO2) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P = .007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower Pao2/FiO2 at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients.Conclusions and RelevanceIn this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status. These findings suggest a substantial reduction of the risk of developing COVID-19–related severe acute respiratory failure requiring ICU admission among vaccinated people.
Background: Limited data are available on the use of prone position in intubated, invasively ventilated patients with Coronavirus disease-19 (COVID-19). Aim of this study is to investigate the use and effect of prone position in this population during the first 2020 pandemic wave.Methods: Retrospective, multicentre, national cohort study conducted between February 24 and June 14, 2020 in 24 Italian Intensive Care Units (ICU) on adult patients needing invasive mechanical ventilation for respiratory failure caused by COVID-19.Clinical data were collected on the day of ICU admission. Information regarding the use of prone position were collected daily. Follow-up for patient outcomes was performed on July 15, 2020. The respiratory effects of the first prone position were studied in a subset of 78 patients. Patients were classified as Responders if the PaO2/FiO2 ratio increased ≥ 20 mmHg during prone position. Results: Of 1057 included patients, mild, moderate and severe ARDS was present in 15, 50 and 35% of patients, respectively and had a resulting mortality of 25, 33 and 41%. Prone position was applied in 61% of the patients. Patients placed prone had a more severe disease and died significantly more (45% vs 33%, p<0.001). Overall, prone position induced a significant increase in PaO2/FiO2 ratio, while no change in respiratory system compliance was observed. Seventy-eight % of patients were Responders to prone position. Non-Responders had a more severe respiratory failure and died more often in the ICU (65% vs. 38%, p=0.047).Conclusions: During the COVID-19 pandemic, prone position has been widely adopted to treat mechanically ventilated patients with respiratory failure. The majority of patients improved their oxygenation during prone position, most likely due to a better ventilation perfusion matching.Trial registration: clinicaltrials.gov number: NCT04388670
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.