Axon pathfinding is a subfield of neural development by which neurons send out axons to reach the correct targets. In particular, motoneurons extend their axons toward skeletal muscles, leading to spontaneous motor activity. In this study, we identified the zebrafish Ccdc80 and Ccdc80-like1 (Ccdc80-l1) proteins in silico on the basis of their high aminoacidic sequence identity with the human CCDC80 (Coiled-Coil Domain Containing 80). We focused on ccdc80-l1 gene that is expressed in nervous and non-nervous tissues, in particular in territories correlated with axonal migration, such as adaxial cells and muscle pioneers. Loss of ccdc80-l1 in zebrafish embryos induced motility issues, although somitogenesis and myogenesis were not impaired. Our results strongly suggest that ccdc80-l1 is involved in axon guidance of primary and secondary motoneurons populations, but not in their proper formation. ccdc80-l1 has a differential role as regards the development of ventral and dorsal motoneurons, and this is consistent with the asymmetric distribution of the transcript. The axonal migration defects observed in ccdc80-l1 loss-of-function embryos are similar to the phenotype of several mutants with altered Hedgehog activity. Indeed, we reported that ccdc80-l1 expression is positively regulated by the Hedgehog pathway in adaxial cells and muscle pioneers. These findings strongly indicate ccdc80-l1 as a down-stream effector of the Hedgehog pathway.
The Coiled-Coil Domain Containing 80 (CCDC80) gene has been identified as strongly induced in rat thyroid PC CL3 cells immortalized by the adenoviral E1A gene. In human, CCDC80 is a potential oncosoppressor due to its down-regulation in several tumor cell lines and tissues and it is expressed in almost all tissues. CCDC80 has homologous in mouse, chicken, and zebrafish. We cloned the zebrafish ccdc80 and analyzed its expression and function during embryonic development. The in-silico translated zebrafish protein shares high similarity with its mammalian homologous, with nuclear localization signals and a signal peptide. Gene expression analysis demonstrates that zebrafish ccdc80 is maternally and zygotically expressed throughout the development. In particular, ccdc80 is strongly expressed in the notochord and it is under the regulation of the Hedgehog pathway. In this work we investigated the functional effects of ccdc80-loss-of-function during embryonic development and verified its interaction with gadd45β2 in somitogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.