The energy retrofit of existing buildings is a key strategy to reduce the energy costs of the building sector. Amongst the retrofit solutions, the adoption of mechanical ventilation systems represents a necessary approach for buildings with high crowding index, such as schools. The air quality in schools is a main issue since children spend a significant fraction of the year in such microenvironments. To date, the scientific literature has carried out several studies concerning the air quality in naturally ventilated schools worldwide, nonetheless most of the studies performed a general evaluation of the air quality just using the CO 2 as a comprehensive indicator. This is an oversimplified approach since the indoor air quality is affected by several pollutants, including airborne particles, whose behavior cannot be predicted by the CO 2 one. The aim of the research is the evaluation of the effect of the ventilation retrofit in a classroom on different indoor air quality parameters and energy consumption. To this end a mechanical ventilation system with a heat recovery unit was installed in a test-classroom and tests with CO 2 -based demand controlled ventilation were performed. CO 2 levels and indoor-to-outdoor particle concentrations were measured and compared to the pre-retrofit ventilation conditions (i.e. manual airing procedures). Results showed that mechanical ventilation systems have simultaneous positive effects on the different pollutants investigated as well as on ventilation heat losses: indeed, lower indoor-to-outdoor concentration ratios, with respect to the airing approach, were detected simultaneously for CO 2 , sub-micron particles and PM 10 .
The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.