Abstract. Recognition of three dimensional (3D) objects in noisy and cluttered scenes is a challenging problem in 3D computer vision. One approach that has been successful in past research is the regional shape descriptor. In this paper, we introduce two new regional shape descriptors: 3D shape contexts and harmonic shape contexts. We evaluate the performance of these descriptors on the task of recognizing vehicles in range scans of scenes using a database of 56 cars. We compare the two novel descriptors to an existing descriptor, the spin image, showing that the shape context based descriptors have a higher recognition rate on noisy scenes and that 3D shape contexts outperform the others on cluttered scenes.
Abstract. In this paper we study how to perform object classification in a principled way that exploits the rich structure of real world labels. We develop a new model that allows encoding of flexible relations between labels. We introduce Hierarchy and Exclusion (HEX) graphs, a new formalism that captures semantic relations between any two labels applied to the same object: mutual exclusion, overlap and subsumption. We then provide rigorous theoretical analysis that illustrates properties of HEX graphs such as consistency, equivalence, and computational implications of the graph structure. Next, we propose a probabilistic classification model based on HEX graphs and show that it enjoys a number of desirable properties. Finally, we evaluate our method using a large-scale benchmark. Empirical results demonstrate that our model can significantly improve object classification by exploiting the label relations.
We address the problem of visual category recognition by learning an image-to-image distance function that attempts to satisfy the following property Figure 1. Three images from the Caltech101 data set, two from the dog category, one from the Faces category. We want to learn distance functions between pairs of images such that the distance from j to i (Dji) is smaller than from k to i (D ki ). Triplets like this one form the basis of our learning algorithm.
The last two years have witnessed the introduction and rapid expansion of products based upon large, systematically-gathered, street-level image collections, such as Google Street View, EveryScape, and Mapjack. In the process of gathering images of public spaces, these projects also capture license plates, faces, and other information considered sensitive from a privacy standpoint. In this work, we present a system that addresses the challenge of automatically detecting and blurring faces and license plates for the purpose of privacy protection in Google Street View. Though some in the field would claim face detection is "solved", we show that state-of-the-art face detectors alone are not sufficient to achieve the recall desired for large-scale privacy protection. In this paper we present a system that combines a standard sliding-window detector tuned for a high recall, low-precision operating point with a fast post-processing stage that is able to remove additional false positives by incorporating domain-specific information not available to the sliding-window detector. Using a completely automatic system, we are able to sufficiently blur more than 89% of faces and 94 − 96% of license plates in evaluation sets sampled from Google Street View imagery.
In this paper we introduce and experiment with a framework for learning local perceptual distance functions for visual recognition. We learn a distance function for each training image as a combination of elementary distances between patch-based visual features. We apply these combined local distance functions to the tasks of image retrieval and classification of novel images. On the Caltech 101 object recognition benchmark, we achieve 60.3% mean recognition across classes using 15 training images per class, which is better than the best published performance by Zhang, et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.