Macrophages have emerged as important therapeutic targets in many human diseases. The aim of this study was to analyze the effect of broccoli membrane vesicles and sulphoraphane (SFN), either free or encapsulated, on the activity of human monocyte-derived M1 and M2 macrophage primary culture. Our results show that exposure for 24 h to SFN 25 µM, free and encapsulated, induced a potent reduction on the activity of human M1 and M2 macrophages, downregulating proinflammatory and anti-inflammatory cytokines and phagocytic capability on C. albicans. The broccoli membrane vesicles do not represent inert nanocarriers, as they have low amounts of bioactive compounds, being able to modulate the cytokine production, depending on the inflammatory state of the cells. They could induce opposite effects to that of higher doses of SFN, reflecting its hormetic effect. These data reinforce the potential use of broccoli compounds as therapeutic agents not only for inflammatory diseases, but they also open new clinical possibilities for applications in other diseases related to immunodeficiency, autoimmunity, or in cancer therapy. Considering the variability of their biological effects in different scenarios, a proper therapeutic strategy with Brassica bioactive compounds should be designed for each pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.