We report the phased genome sequence of an interspecific hybrid, the flowering cherry ‘Somei-Yoshino’ (Cerasus × yedoensis). The sequence data were obtained by single-molecule real-time sequencing technology, split into two subsets based on genome information of the two probable ancestors, and assembled to obtain two haplotype phased genome sequences of the interspecific hybrid. The resultant genome assembly consisting of the two haplotype sequences spanned 690.1 Mb with 4,552 contigs and an N50 length of 1.0 Mb. We predicted 95,076 high-confidence genes, including 94.9% of the core eukaryotic genes. Based on a high-density genetic map, we established a pair of eight pseudomolecule sequences, with highly conserved structures between the two haplotype sequences with 2.4 million sequence variants. A whole genome resequencing analysis of flowering cherries suggested that ‘Somei-Yoshino’ might be derived from a cross between C. spachiana and either C. speciosa or its relatives. A time-course transcriptome analysis of floral buds and flowers suggested comprehensive changes in gene expression in floral bud development towards flowering. These genome and transcriptome data are expected to provide insights into the evolution and cultivation of flowering cherry and the molecular mechanism underlying flowering.
SummaryHayai-Annotation Plants is a browser-based interface for an ultra-fast and accurate functional gene annotation system for plant species using R. The pipeline combines the sequence-similarity searches, using USEARCH against UniProtKB (taxonomy Embryophyta), with a functional annotation step. Hayai-Annotation Plants provides five layers of annotation: i) protein name; ii) gene ontology terms consisting of its three main domains (Biological Process, Molecular Function and Cellular Component); iii) enzyme commission number; iv) protein existence level; and v) evidence type. It implements a new algorithm that gives priority to protein existence level to propagate GO and EC information and annotated Arabidopsis thaliana representative peptide sequences (Araport11) within 5 min at the PC level.Availability and implementationThe software is implemented in R and runs on Macintosh and Linux systems. It is freely available at https://github.com/kdri-genomics/Hayai-Annotation-Plants under the GPLv3 license.Supplementary information Supplementary data are available at Bioinformatics online.
Owing to its high ornamental value, the double flower phenotype of hydrangea (Hydrangea macrophylla) is one of its most important traits. In this study, genome sequence information was obtained to explore effective DNA markers and the causative genes for double flower production in hydrangea. Single-molecule real-time sequencing data followed by a Hi-C analysis was employed. Two haplotype-phased sequences were obtained from the heterozygous genome of hydrangea. One assembly consisted of 3,779 scaffolds (2.256 Gb in length and N50 of 1.5 Mb), the other also contained 3,779 scaffolds (2.227 Gb in length, and N50 of 1.4 Mb). A total of 36,930 genes were predicted in the sequences, of which 32,205 and 32,222 were found in each haplotype. A pair of 18 pseudomolecules was constructed along with a high-density SNP genetic linkage map. Using the genome sequence data, and two F2 populations, the SNPs linked to double flower loci (djo and dsu) were discovered. DNA markers linked to djo and dsu were developed, and these could distinguish the recessive double flower allele for each locus, respectively. The LEAFY gene is a very likely candidate as the causative gene for dsu, since frameshift was specifically observed in the double flower accession with dsu.
The first genome sequence of an interspecific grape hybrid (V. labruscana × V. vinifera), ‘Shine Muscat’, an elite table grape cultivar bred in Japan, is presented. The resultant genome assemblies included two types of sequences: a haplotype-phased sequence of the highly heterozygous genomes and an unphased sequence representing a "pseudo-haploid" genome. The unphased sequences, assembled to the chromosome level with Hi-C reads, spanned 488.97 Mb in length, 99.1% of the estimated genome size, with 4,595 scaffold sequences and a 23.9-Mb N50 length. The phased sequences had 15,650 scaffolds spanning 1.0 Gb and a 4.2-Mb N50 length. 32,827 high-confidence genes were predicted on the unphased genomes. Clustering analysis of the ‘Shine Muscat’ gene sequences with three other Vitis species and Arabidopsis indicated that 11,279 orthologous gene clusters were common to Vitis spp. and Arabidopsis, 4, 385 were Vitis-specific, and 234 were ‘Shine Muscat’-specific. Whole-genome resequencing was also performed for the parental lines of ‘Shine Muscat’, Akitsu-21 and ‘Hakunan’, and parental-specific copy number variations were identified. The obtained genome resources provide new insights that could assist in cultivation and breeding strategies to produce high-quality table grapes.
Wild plants are often tolerant to biotic and abiotic stresses in their natural environments, whereas domesticated plants such as crops frequently lack such resilience. This difference is thought to be due to the high levels of genome heterozygosity in wild plant populations and the low levels of heterozygosity in domesticated crop species. In this study, common vetch ( Vicia sativa ) was used as a model to examine this hypothesis. The common vetch genome (2n = 14) was estimated as 1.8 Gb in size. Genome sequencing produced a reference assembly that spanned 1.5 Gb, from which 31,146 genes were predicted. Using this sequence as a reference, 24,118 single nucleotide polymorphisms were discovered in 1243 plants from 12 natural common vetch populations in Japan. Common vetch genomes exhibited high heterozygosity at the population level, with lower levels of heterozygosity observed at specific genome regions. Such patterns of heterozygosity are thought to be essential for adaptation to different environments. The resources generated in this study will provide insights into de novo domestication of wild plants and agricultural enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.