Along the Mediterranean Sea shelf, algal reefs made of crustose coralline algae and Peyssonneliales are known as Coralligenous. It ranks among the most important ecosystems in the Mediterranean Sea because of its extent, complexity, and heterogeneity, supporting very high levels of biodiversity. Descriptive approaches for monitoring purposes are often aimed at assessing the surficial ephemeral canopy, which is sustained and controlled by the occurrence of the long-lasting rigid structure at the base. This practice led to the non-univocal definition of Coralligenous, sometimes indicated as “animal Coralligenous” because of the surficial dominance of these components. The quantitative assessment of the builders that actively build up the persistent structure through geological time is therefore a fundamental topic. We collected two discrete coralligenous samples in front of Marzamemi village (Sicily, Ionian Sea), the first from an area of a dense coralligenous cover (- 37 m) and the second one from an area with sparse build-ups (- 36 m). By using image analysis and computerized axial tomography, we distinguished and quantified the different components both on the surface and inside the framework. In both cases, our results confirm the primary role of crustose coralline algae as major builders of the Mediterranean Coralligenous, this aspect matching with the evidence from the Quaternary fossil record. We suggest that the role of encrusting calcareous red algae in the Coralligenous should be considered in conservation and management policies.
The mesophotic domain is a poorly explored part of the oceans, notably in the Mediterranean Sea. Benthic communities in these depths are not well documented and as such are under higher risk from anthropogenic impacts. Hard substrate habitats in this depth window are not common and are a key ecotope. The Malta Plateau in the central Mediterranean, which is characterized by low sedimentation rates, offers a potentially unexplored domain for these features. Bathymetric and backscatter data offshore of the eastern coast of the island of Malta were used to identify > 1,700 small structures in mesophotic depths. These structures were verified to be biogenic mounds by dives. The mounds extend from several meters to tens of meters in diameter and occur in two main depth windows −40 to 83 meters below present sea level (mbpsl) and 83–120 mbpsl—each formed probably in a different stage during the last glacial cycle. The mounds are composed of interlocking bioconstruction by encrusting organisms and are colonized by sponges and various cold water corals (most of which are protected; e.g., Madrepora oculata). This unique and important habitat is currently under grave threat by human activity, most immediately by trawling and anchoring activity.
<p>Transits during oceanographic expeditions constitute a potential huge amount of acquired bathymetric data that could be systematically integrated to increase the knowledge on submarine morphology, especially for planned surveys in the equatorial Atlantic, the Arctic, the Indian and the Southern Oceans. The recent PNRA ISOBatA project aims to efficiently exploit sea&#64258;oor datasets collected during transfer times within the Antarctic region and the Ross Sea. Along the route from New Zealand to the Italian <em>Mario Zucchelli Station</em> in the Ross Sea, the Emerald Fracture Zone and the Macquarie Triple Junction, located in the SW Pacific Ocean, represent two selected areas to test the strength of transit acquisition in remote areas, normally affected by adverse weather conditions.</p><p>&#160;</p><p>The ISOBatA project has the main purpose to contribute to the mapping of Antarctic waters developing best practices and dedicated workflows to implement QA in multibeam data acquisition procedures during transit times, as well as in the processing, analysis and archiving of data and metadata.</p><p>The ISOBatA experience in the Southern Ocean suggests there are several critical issues associated with collection of multibeam data in remote and ice-infested waters. Operating procedures need more standardization, to avoid the acquisition of redundant data along common routes and unreliable data.</p><p>Our work aims to open a discussion to address the need for standardization in data acquisition during transit times, which should include priority in accordance with the geomorphological/geographical nature of the working areas. The integration of bathymetric data acquired during research vessel transfers to remote regions could imply a common international effort for a systematic exploration of the seafloor, sharing coverage in real time to avoid redundancy.</p>
<p>Marine ecosystem restoration actions are becoming increasingly more popular in many areas of the world, representing one of the greatest challenges to date that can deliver results in line with the UN 2030 Agenda for Sustainable Development. However, their success rate is highly variable and depends mainly on the specific biological and ecological characteristics of the species involved, their ecosystem functioning, and undoubtedly on how, where and when restoration is conducted.&#160;</p> <p>Knowledge about the factors that enhance or limit the success of restoration efforts, with respect to a given habitat is, to date, very limited for the marine environment. Different sensitivity to human pressures and the spatial variability in the ecological variables that determine their presence and distribution are undoubtedly key factors, and it is therefore necessary to provide detailed and focused information on the selection of restoration sites and methods, from which successful and sustainable restoration actions depend.&#160;</p> <p>The national RENOVATE project (ecosystemic appRoach to the EvaluatioN and testing of cOmpensation and mitigation actions in the marine enVironment: the cAse of the civiTavEcchia harbuor), coordinated by CMCC (Mediterranean Centre for the study of Climate Changes) and funded by &#8220;AdSP (Autorit&#224; di SIstema Portuale) of the north-central Tyrrhenian Sea&#8221; is performing an integrated methodology for the compensation of Mediterranean marine ecosystems, damaged by anthropogenic impacts, in selected areas located offshore Civitavecchia harbor, where port expansion activities will soon be started. In this context, the present work focuses on providing a high resolution mapping of <em>Posidonia oceanica</em> meadows within the targeted project areas and introduces a new approach, based on the application of geospatial modeling techniques, to perform a semi-automatic detection of appropriate restoration sites. The proposed work flow is based on performing quantitative analysis of acoustic remote sensing data (i.e. Multibeam bathymetry and side-scan sonar backscatter intensity) applying Object-Based Image Analysis (OBIA) techniques, and ad-hoc developed numeric modeling. Our major goal was to classify seafloor suitability for restoration actions, according to variation in landscape spatial arrangement of <em>P. oceanica</em> meadows (determined by type of lower and upper limit, type of seagrass bed morphology, meadow patchiness, etc), quantified through the morphometric characterization of their geospatial configuration and architecture, and the operational depth for planned seagrass implantation strategy. Our work attempts to contribute to the development of efficient methodologies for the detection of suitable restoration sites that can support long-term growth and survival of P. oceanica meadows.</p>
<p>Recent advances in underwater and airborne robotic systems and ocean technologies have opened new perspectives in marine geology and its applications in the context of coastal and marine economic activities, whose sustainable development is increasingly acknowledged as a pillar for the new blue economy. BridgET (Bridging the gap between the land and the sea in a virtual Environment for innovative Teaching and community involvement in the science of climate change-induced marine and coastal geohazard) is an EU ERASMUS+ project designed to develop innovative and inclusive teaching methods to address a growing demand for strategic skills and scientific expertise in the field of 3D geological mapping of coastal environments. Seamless integration of the wide variety of multisource and multiscale onshore, nearshore and offshore geospatial data is indeed one of the main areas for improvement in the implementation of efficient management practices in coastal regions, where climate change, rising sea level, and geohazards are considerable environmental issues.</p> <p>BridgET involves a partnership consisting of six European universities with outstanding expertise in the study of geological hazards, and climate impacts in marine and coastal areas (i.e., University of Milano-Bicocca, Italy, Arctic University of Troms&#248;/CAGE - Norway, National and Kapodistrian University of Athens - Greece, Kiel University, Germany, University of Liege &#8211; Belgium, and the University of Malta), two Italian research institutes (INGV and INAF) and a German company (Orthodrone GmvH) specialized in UAS-based LiDAR and photogrammetry data acquisition services and analyses. Project implementation relies on delivering learning and teaching activities through dedicated summer schools for MSc students by efficiently combining the partner&#8217;s expertise. Schools focus on giving students a hands-on experience with the variety of methods and procedures adopted in geospatial data acquisition and processing, including the use of drones (Uncrewed Aerial System &#8211; UAS), acoustic remote sensing techniques and underwater robotic systems, together with &#160;&#160;&#160;&#160;&#160;the progress made by computer visions and digital image analysis by using Artificial Intelligence (AI). Students are also introduced to the opportunity to easily examine multiple viewing angles of the seabed and coastal 3D surfaces by using immersive and non-immersive Virtual Reality (VR), to bring them closer to a more straightforward observation of geomorphological data and geological phenomena.</p> <p>The first Summer School was held in Santorini between the 3rd and 14th of October, 2022. It was attended by 26 students coming from 13 different countries. Teaching and learning activities included several classrooms, fieldwork, laboratory sessions, and seven seminars and cultural visits dealing with transversal topics, allowing students to approach an integrated understanding of human interaction with physical processes from social and economic perspectives. In this presentation, we give examples of course content used to allow students to develop a deeper understanding of theoretical and practical knowledge of climate-induced coastal and marine geohazards. Participants' opinions on the quality of the offered learning/training activities of the Erasmus+ BridgET Santorini Summer School (collected through a dedicated questionnaire) will also be presented.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.