Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult due to the nonlinear interaction of excitation waves within a heterogeneous anatomical substrate1–4. Lacking a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation5–7. Here, we establish the relation between the response of the tissue to an electric field and the spatial distribution of heterogeneities of the scale-free coronary vascular structure. We show that in response to a pulsed electric field E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E), and a characteristic time τ for tissue depolarization that obeys a power law τ∝Eα. These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore efficient termination of fibrillation. Using this novel control strategy, we demonstrate, for the first time, low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and at the same time provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.
Using 24-hour ambulatory electrocardiography, the RR intervals of all beats were determined in a West Highland white terrier with sick sinus syndrome characterized by sinus arrest, bradycardia, supraventricular tachycardia (SVT) and varying degrees of atrioventricular (AV) heart block and long sinus pauses. Distinctive patterns of bradycardia and 1:1, 2:1, 3:1, 4:1 and 5:1 AV block associated with SVT were evident in the tachogram (RR interval distribution over time) and Poincaré plots (short-term heart rate variability plots of RRn versus RRn + 1). These patterns differed from those of abrupt alteration in cycle length during long sinus pauses or bursts of supraventricular tachycardia. Recognition of such patterns may direct attention to time points for which close attention to the cardiac rhythm should be evaluated in the full-disclosure of the 24-hour ECG recording.
The RR intervals of sinus and ventricular beats were determined by analysis of a 24-hour ambulatory electrocardiogram in a Boxer before and after treatment with sotalol. These RR intervals were plotted using tachograms, histograms, and Poincaré plots. The tachogram demonstrated a ‘band’ wherein a range of RR intervals was infrequent, the histogram did not take the form of a single Gaussian distribution of RR intervals, and the Poincaré plot showed nonhomogeneous beat to beat variability. This type of patterning was described as a “zone of avoidance” potentially caused by the clustering of beats within specific ranges. Treatment with sotalol enhanced the “zone of avoidance”. Further investigation is needed to understand the mechanism for this observation as well as any clinical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.