The electrical discharge machining-process (EDM) is a smart solution to optimize the manufacturing chain of customized and complex shaped ceramic components. To comply with the high requirements for the machine and mold design, it is necessary to improve the mechanical properties of ED-machinable ceramics. In this study, ceramic composites with a tetragonal zirconia matrix and tungsten carbide as electrically conductive dispersion were investigated. To improve the toughness of this high strength material, co-stabilized zirconia coated with yttria and neodymia as dopants were used in the compositions with 1.5/1.5 and 1.75/1.25 mol %. These recipes were compared to commercial 3Y-TZP as a reference matrix material combined with the same WC raw powder. The electrically conductive phase content was varied from 20 to 28 vol %. For all compositions, the ceramic blanks were hot pressed at identical dwell and pressure, but with various sintering temperatures (1300 °C to 1450 °C) and then tested with respect to the mechanical and electrical properties. By variation of the stabilizer system, a significantly higher toughness of up to 11.3 MPa√m compared to 5.3 MPa√m for 3Y-TZP-20WC is achieved while the bending strength stays at a comparable high level of >1500 MPa.
Composite ceramics of stabilizer oxide coated ytterbia-samaria costabilized zirconia (1.5Yb1.5Sm-TZP) and 24–32 vol% of tungsten carbide as an electrically conductive dispersion were manufactured by hot pressing at 1300–1400 °C for 2 h at 60 MPa pressure. The materials were characterized with respect to microstructure, phase composition, mechanical properties and electrical discharge machinability by die sinking. Materials with a nanocomposite microstructure and a strength of up to 1700 MPa were obtained. An attractive toughness of 6–6.5 MPa√m is achieved as 40–50% of the zirconia transformed upon fracture. The materials show fair material removal rates of 1 mm³/min in die sinking. Smooth surfaces indicate a material removal mechanism dominated by melting.
Zirconia materials are frequently used in dental applications due to their excellent strength and their tooth-like aspect. Standard yttria stabilized zirconia (Y-TZP) ceramics suffer, however, from moderate toughness and vulnerability to low-temperature degradation. In this study, 1Y6Ce-TZP materials reinforced with different amounts of alumina and/or strontium hexaaluminate were manufactured by slip casting and pressureless sintering at different temperatures to assess their mechanical properties, microstructure, phase composition, and low-temperature degradation stability. Results show that these materials exhibit a high fracture resistance of 10–12 MPa√m, a bending strength between 700–950 MPa, and a Vickers hardness of 1100–1200 HV10. Strontium hexaaluminate (SA6) precipitates were formed in situ by reaction of alumina and strontium zirconate. Although crack deflection at SA6 platelets was clearly visible, a net toughening was not observed. Accelerated ageing tests at 134 °C/3 bar water vapor pressure showed best results for mixed alumina/SA6 reinforcements and a sintering temperature of 1500 °C. Mehl-Avrami-Johnson plots used to describe the ageing kinetics showed clear indications of different ageing mechanisms due to the introduction of the SA6 phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.