In recent years the floods in Mexico caused economic and human losses, therefore, it is necessary to use the possible tools that can provide help to the government to reduce damage from natural disasters. For this, we decided to develop a graphical user interface, known as GUI in Matlab for the segmentation of SAR, Multispectral and POLSAR images, with the intention of detecting flooding and vulnerable areas to flooding. The designed software compute a rivers segmentation in order to make the comparison between image with flooding and the image without flooding from the same area, and to obtain a visually result where a projection of the vulnerable areas to flooding in the original image this with help of basic segmentation algorithms such as grayscale, binarization, dilation, wavelet, normalization, filtering and edge detection.
Floodings in Mexico generated economic and human losses in recent years, so it is necessary to use all possible tools that can help the government to reduce all these disasters, especially human losses. Therefore, a Graphical User Interface (GUI) was developed in Matlab for the segmentation and classification of vegetation, water and city in multispectral images obtained from the Landsat 8 satellite with the intention of detecting floods and vulnerable zones of flooding. The interface performs a feature extraction, segmentation, classification, validation and visualization of the final results obtained through basic segmentation algorithms such as the Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), in addition to performing the segmentation with one of the artificial intelligence methodologies most used in the state of the art: support vector machine (SVM) and the proposal of SVM with the k-nearest neighbors as an improvement to the algorithm.
Remote sensing imaging datasets for classification generally present high levels of imbalance between classes of interest. This work presented a study of a set of performance evaluation metrics for an imbalance dataset. In this work, a support vector machine (SVM) was used to perform the classification of seven classes of interest in a popular dataset called Salinas-A. The performance evaluation of the classifier was performed using two types of metrics: 1) Metrics for multi-class classification, and 2) Metrics based on the binary confusion matrix. In the results, a comparison of the scores of each metric is developed, some being more optimistic than others due to the bias that they present given the imbalance. In addition, our case study helps to conclude that the Matthews correlation coefficient (MCC) presents the lowest bias in imbalanced cases and is regarded to be robust metric. These results can be extended to any imbalanced dataset taking into account the equations developed by Luque.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.