The lysosome is the final destination for degradation of endocytic cargo, plasma membrane constituents, and intracellular components sequestered by macroautophagy. Fusion of endosomes and autophagosomes with the lysosome depends on the GTPase Rab7 and the homotypic fusion and protein sorting (HOPS) complex, but adaptor proteins that link endocytic and autophagy pathways with lysosomes are poorly characterized. Herein, we show that Pleckstrin homology domain containing protein family member 1 (PLEKHM1) directly interacts with HOPS complex and contains a LC3-interacting region (LIR) that mediates its binding to autophagosomal membranes. Depletion of PLEKHM1 blocks lysosomal degradation of endocytic (EGFR) cargo and enhances presentation of MHC class I molecules. Moreover, genetic loss of PLEKHM1 impedes autophagy flux upon mTOR inhibition and PLEKHM1 regulates clearance of protein aggregates in an autophagy- and LIR-dependent manner. PLEKHM1 is thus a multivalent endocytic adaptor involved in the lysosome fusion events controlling selective and nonselective autophagy pathways.
Autophagy is a highly conserved process and is essential for the maintenance of cellular homeostasis. Autophagy occurs at a basal level in all cells, but it can be up-regulated during stress, starvation, or infection. Misregulation of autophagy has been linked to various disorders, including cancer, neurodegeneration, and immune diseases. Here, we discuss the essential proteins acting in the formation of an autophagosome, with a focus on the ULK and VPS34 kinase complexes, phosphatidylinositol 3-phosphate effector proteins, and the transmembrane autophagy-related protein ATG9. The function and regulation of these and other autophagy-related proteins acting during formation will be addressed, in particular during amino acid starvation.
Autophagy is a highly conserved catabolic process cells use to maintain their homeostasis by degrading misfolded, damaged and excessive proteins, nonfunctional organelles, foreign pathogens and other cellular components. Hence, autophagy can be nonselective, where bulky portions of the cytoplasm are degraded upon stress, or a highly selective process, where preselected cellular components are degraded. To distinguish between different cellular components, autophagy employs selective autophagy receptors, which will link the cargo to the autophagy machinery, thereby sequestering it in the autophagosome for its subsequent degradation in the lysosome. Autophagy receptors undergo post-translational and structural modifications to fulfil their role in autophagy, or upon executing their role, for their own degradation. We highlight the four most prominent protein modificationsphosphorylation, ubiquitination, acetylation and oligomerisationthat are essential for autophagy receptor recruitment, function and turnover. Understanding the regulation of selective autophagy receptors will provide deeper insights into the pathway and open up potential therapeutic avenues.
Macroautophagy/autophagy is a cellular process in which cytosolic contents are degraded by lysosome in response to various stress conditions. Apart from its role in the maintenance of cellular homeostasis, autophagy also involves in regulation of cell cycle progression under nutrient-deprivation conditions. However, whether and how autophagy is regulated by the cell cycle especially during mitosis remains largely undefined. Here we show that WIPI2/ATG18B (WD repeat domain, phosphoinositide interacting 2), an autophagy-related (ATG) protein that plays a critical role in autophagosome biogenesis, is a direct substrate of CUL4-RING ubiquitin ligases (CRL4s). Upon mitosis induction, CRL4s are activated via neddylation, and recruit WIPI2 via DDB1 (damage specific DNA binding protein 1), leading to polyubiquitination and proteasomal degradation of WIPI2 and suppression of autophagy. The WIPI2 protein level and autophagy during mitosis could be rescued by knockdown of CRL4s or treatment with MLN4924/Pevonedistat, a selective inhibitor of CRLs, via suppression of NAE1 (NEDD8 activating enzyme E1 subunit 1). Moreover, restoration of WIPI2 rescues autophagy during mitosis and leads to mitotic slippage and cell senescence. Our study thus discovers a novel function of CRL4s in autophagy by targeting WIPI2 for polyubiquitination and proteasomal degradation during mitosis.Abbreviations: ACTB, actin beta; ATG, autophagy-related; AMPK, AMP-activated protein kinase; AURKB/ ARK2, aurora kinase B; BafA1, bafilomycin A 1 ; CCNB1, cyclin B1; CDK1, cyclin dependent kinase 1; CHX, cycloheximide; CQ, chloroquine; CRL4s, CUL4-RING ubiquitin ligases; DDB1, damage specific DNA binding protein 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; GST, glutathione S-transferase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; STK11/ LKB1,serine/threonine kinase 11; MTORC1/MTOR complex 1, mechanistic target of rapamycin kinase complex 1; NAE1, NEDD8 activating enzyme E1 subunit 1; NOC, nocodazole; RING, really interesting new gene; RBX1, ring-box 1; SA-GLB1/β-gal, senescence-associated galactosidase beta 1; TSC2, TSC complex subunit 2; TUBA, tubulin alpha; WIPI2, WD repeat domain, phosphoinositide interacting 2 ARTICLE HISTORY
Autophagy defects are implicated in multiple late-onset neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS) and Alzheimer’s, Huntington’s, and Parkinson’s diseases. Since aging is the most common shared risk factor in neurodegeneration, we assessed rates of autophagy in mammalian neurons during aging. We identified a significant decrease in the rate of constitutive autophagosome biogenesis during aging and observed pronounced morphological defects in autophagosomes in neurons from aged mice. While early stages of autophagosome formation were unaffected, we detected the frequent production of stalled LC3B-negative isolation membranes in neurons from aged mice. These stalled structures recruited the majority of the autophagy machinery, but failed to develop into LC3B-positive autophagosomes. Importantly, ectopically expressing WIPI2B effectively restored autophagosome biogenesis in aged neurons. This rescue is dependent on the phosphorylation state of WIPI2B at the isolation membrane, suggesting a novel therapeutic target in age-associated neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.