The neurodegenerative properties of the parkinsonian inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are thought to result from inhibition of complex I of the mitochondrial respiratory chain by the monoamine oxidase-B (MAO-B) generated 1-methyl-4-phenylpyridinium metabolite MPP+. Treatment with 7-nitroindazole (7-NI) protects rodents and baboons against MPTP's neurotoxicity, presumably as a consequence of its inhibition of neuronal nitric oxide synthase (nNOS). The results reported in the present communication, while not in conflict with the proposed role of nNOS, raise the possibility that the inhibition of MAO-B by 7-NI also may contribute to the observed neuroprotection.
The ability of 7‐nitroindazole (7‐NI) to protect against MPTP‐induced neurotoxicity has been attributed to its inhibition of neuronal nitric oxide synthase. In the present study, 7‐NI was found to counteract almost completely striatal dopamine depletion caused by a single subcutaneus injection of 20 mg/kg MPTP in mice. This effect, however, was accompanied by a significant reduction in the striatal levels of MPP+, the toxic metabolite generated via monoamine oxidase B‐catalyzed MPTP oxidation. In the presence of 7‐NI, a dose of 40 mg/kg MPTP produced MPP+ concentrations similar to those measured after treatment with 20 mg/kg MPTP alone. A comparison of neurotoxicity in these two experimental conditions (i.e., mice treated with 20 mg/kg alone versus 40 mg/kg MPTP plus 7‐NI) revealed only a slight (20%), but statistically significant, protection of dopamine depletion with 7‐NI. These data indicate that the mechanism by which 7‐NI counteracts MPTP neurotoxicity in mice is not due solely to inhibition of neuronal nitric oxide synthase, but involves a reduction in MPP+ formation.
The monoamine oxidase B (MAO-B) catalyzed oxidation of amines has been proposed to proceed via a polar pathway, an initial single-electron transfer pathway and an initial hydrogen atom transfer pathway. Results from previous studies on selected N-cyclopropyl-4-substituted-1,2,3,6-tetrahydropyridine derivatives have led us to consider a mechanism for these cyclic tertiary allylamines which may not necessarily involve the aminyl radical cation as required by an initial single-electron transfer step. The studies summarized in this paper were undertaken to explore further the structural features that determine the MAO-B substrate and/or inactivator properties of various 1,4-disubstituted tetrahydropyridine derivatives. We report here the results of our studies on the synthesis and MAO-B catalyzed oxidation of 1-methyl- and 1-cyclopropyl-1,2,3,6-tetrahydropyridine derivatives bearing a variety of heteroaromatic groups at C-4. All of the N-cyclopropyltetrahydropyridine analogs were time and concentration dependent inhibitors of MAO-B while all of the N-methyltetrahydropyridine analogs and the N-cyclopropyl-4-(1-methyl-2-pyrryl)tetrahydropyridine analog were substrates. The substrate properties (Kcat/KM) covered a range of 6 to 1800 min-1 mM-1 while the range for the inactivator properties for which Kinact/KI values could be obtained was 0.1-1.0 min-1 mM-1. The partition ratios for the N-cyclopropyl analogs varied from 4 to 17 except for the 4-(1-methyl-2-pyrryl) analog, which had a partition ratio of 400. These results are discussed in terms of the putative allylic radical intermediate and in the context of the hydrogen atom transfer and single-electron transfer based mechanisms.
Previous studies have shown that 4-benzyl-1-cyclopropyl-1,2,3,6-tetrahydropyridine is an excellent monoamine oxidase B (MAO-B) substrate (kappa cat/KM = 1538 min-1 mM-1) although the corresponding 4-phenyl analog displays MAO-B inactivating properties only. This behavior led us to speculate that the pathway for the MAO-B catalyzed oxidation of these tetrahydropyridines may not necessarily proceed via an initial single electron transfer step as proposed by others but rather through an initial alpha-carbon hydrogen atom abstraction step. In the present studies we have examined the interactions of various 4-phenoxy-, 4-phenyl-, and 4-thiophenoxy-1-cyclopropyl-1,2,3,6-tetrahydropyridine derivatives, some of which bear substituents on the phenyl ring. The 4-thiophenoxy- and all of the 4-phenoxytetrahydropyridine derivatives proved to be substrates but not inactivators of MAO-B, while several of the 4-phenyltetrahydropyridine derivatives were inactivators but not substrates. A case of particular interest was 1-cyclopropyl-4-(2-methylphenyl)-1,2,3,6-tetrahydropyridine, which displayed only substrate properties. The results are discussed in terms of two catalytic pathways, one of which involves partitioning of the proposed cyclopropylaminyl radical cation intermediate between cyclopropyl ring opening and proton loss while the second involves partitioning of the parent amine between an initial single electron transfer step, leading to cyclopropylaminyl radical cation formation and enzyme inactivation, and an initial alpha-carbon hydrogen atom abstraction step, leading to an allylic radical and dihydropyridinium product formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.