Thirteen cases of feline primary hyperaldosteronism were diagnosed based on clinical signs, serum biochemistry, plasma aldosterone concentration, adrenal imaging and histopathology of adrenal tissue. Two cases presented with blindness caused by systemic hypertension, whilst the remaining 11 cases showed weakness resulting from hypokalaemic polymyopathy. Elevated concentrations of plasma aldosterone and adrenocortical neoplasia were documented in all cases. Seven cases had adrenal adenomas (unilateral in five and bilateral in two) and six had unilateral adrenal carcinomas. Three cases underwent medical treatment only with amlodipine, spironolactone and potassium gluconate; two cases survived for 304 and 984 days until they were euthanased because of chronic renal failure, whilst the third case was euthanased at 50 days following failure of the owner to medicate the cat. Ten cases underwent surgical adrenalectomy following a successful stabilisation period on medical management. Five cases remain alive at the time of writing with follow-up periods of between 240 and 1803 days. Three cases were euthanased during or immediately following surgery because of surgical-induced haemorrhage. One cat was euthanased 14 days after surgery because of generalised sepsis, whilst the remaining cat was euthanased 1045 days after surgery because of anorexia and the development of a cranial abdominal mass. It is recommended that primary hyperaldosteronism should be considered as a differential diagnosis in middle-aged and older cats with hypokalaemic polymyopathy and/or systemic hypertension and should no longer be considered a rare condition.
Practical relevance: Diabetes mellitus (DM) is a common endocrinopathy in cats that appears to be increasing in prevalence. The prognosis for affected cats can be good when the disease is well managed, but clinical management presents challenges, both for the veterinary team and for the owner. These ISFM Guidelines have been developed by an independent, international expert panel of clinicians and academics to provide practical advice on the management of routine (uncomplicated) diabetic cats. Clinical challenges: Although the diagnosis of diabetes is usually straightforward, optimal management can be challenging. Clinical goals should be to limit or eliminate clinical signs of the disease using a treatment regimen suitable for the owner, and to avoid insulin-induced hypoglycaemia or other complications. Optimising bodyweight, feeding an appropriate diet and using a longer acting insulin preparation (eg, protamine zinc insulin, insulin glargine or insulin detemir) are all factors that are likely to result in improved glycaemic control in the majority of cats. There is also some evidence that improved glycaemic control and reversal of glucose toxicity may promote the chances of diabetic remission. Owner considerations and owner involvement are an important aspect of management. Provided adequate support is given, and owners are able to take an active role in monitoring blood glucose concentrations in the home environment, glycaemic control may be improved. Monitoring of other parameters is also vitally important in assessing the response to insulin. Insulin adjustments should always be made cautiously and not too frequently -unless hypoglycaemia is encountered. Evidence base: The Panel has produced these Guidelines after careful review of the existing literature and of the quality of the published studies. They represent a consensus view on practical management of cats with DM based on available clinical data and experience. However, in many areas, substantial data are lacking and there is a need for better studies in the future to help inform and refine recommendations for the clinical management of this common disease.
Increasingly, human activities, including those aimed at conserving species and ecosystems (conservation activities) influence not only the survival and fitness but also the welfare of wild animals. Animal welfare relates to how an animal is experiencing its life and encompasses both its physical and mental states. While conservation biology and animal welfare science are both multi-disciplinary fields that use scientific methods to address concerns about animals, their focus and objectives sometimes appear to conflict. However, activities impacting detrimentally on the welfare of individual animals also hamper achievement of some conservation goals, and societal acceptance is imperative to the continuation of conservation activities. Thus, the best outcomes for both disciplines will be achieved through collaboration and knowledge-sharing. Despite this recognition, cross-disciplinary information-sharing and collaborative research and practice in conservation are still rare, with the exception of the zoo context. This paper summarizes key points developed by a group of conservation and animal welfare scientists discussing scientific assessment of wild animal welfare and barriers to progress. The dominant theme emerging was the need for a common language to facilitate cross-disciplinary progress in understanding and safeguarding the welfare of animals of wild species. Current conceptions of welfare implicit in conservation science, based mainly on “fitness” (physical states), need to be aligned with contemporary animal welfare science concepts which emphasize the dynamic integration of “fitness” and “feelings” (mental experiences) to holistically understand animals' welfare states. The way in which animal welfare is characterized influences the way it is evaluated and the emphasis put on different features of welfare, as well as, the importance placed on the outcomes of such evaluations and how that information is used, for example in policy development and decision-making. Salient examples from the New Zealand and Australian context are presented to illustrate. To genuinely progress our understanding and evaluation of wild animal welfare and optimize the aims of both scientific disciplines, conservation and animal welfare scientists should work together to evolve and apply a common understanding of welfare. To facilitate this, we propose the formal development of a new discipline, Conservation Welfare, integrating the expertise of scientists from both fields.
Knowledge of the welfare status of wild animals is vital for informing debates about the ways in which we interact with wild animals and their habitats. Currently, there is no published information about how to scientifically assess the welfare of free-roaming wild animals during their normal day-to-day lives. Using free-roaming horses as an example, we describe a ten-stage protocol for systematically and scientifically assessing the welfare of individual non-captive wild animals. The protocol starts by emphasising the importance of readers having an understanding of animal welfare in a conservation context and also of the Five Domains Model for assessing welfare. It goes on to detail what species-specific information is required to assess welfare, how to identify measurable and observable indicators of animals’ physical states and how to identify which individuals are being assessed. Further, it addresses how to select appropriate methods for measuring/observing physical indicators of welfare, the scientific validation of these indicators and then the grading of animals’ welfare states, along with assigning a confidence score. Finally, grading future welfare risks and how these can guide management decisions is discussed. Applying this ten-stage protocol will enable biologists to scientifically assess the welfare of wild animals and should lead to significant advances in the field of wild animal welfare.
The aim of this retrospective study was to review the medical records of cats referred to the University of Bristol for investigation of laryngeal disease (n=35). Cases were categorised into one of four groups: cats with laryngeal paralysis (LP, n=14), laryngeal neoplasia (n=10), laryngeal inflammation (n=6), or miscellaneous laryngeal diseases (n=5). Laryngoscopy and echolaryngography were useful diagnostic techniques but histology was required for diagnosis of diseases other than LP. Two cats with lymphoma received chemotherapy achieving survival times of 60 and 1440 days. Four cats with LP were treated surgically, with a median survival time of 300 days (range 10-360 days) and six were treated conservatively with a median survival time of 780 days (range 300-2520 days). Three cats with inflammatory disease were treated medically and one by excision of the lesion. Two cats achieved survival times of 120 and 2800 days. Cats with LP, laryngeal lymphoma or laryngitis had excellent long-term survival following appropriate treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.