Paclitaxel is a commonly used cytotoxic anticancer drug with potentially life-threatening toxicity at therapeutic doses and high interindividual pharmacokinetic variability. Thus, drug and effect monitoring is indicated to control dose-limiting neutropenia. Joerger et al. (2016) developed a dose individualization algorithm based on a pharmacokinetic (PK)/pharmacodynamic (PD) model describing paclitaxel and neutrophil concentrations. Furthermore, the algorithm was prospectively compared in a clinical trial against standard dosing (Central European Society for Anticancer Drug Research Study of Paclitaxel Therapeutic Drug Monitoring; 365 patients, 720 cycles) but did not substantially improve neutropenia. This might be caused by misspecifications in the PK/PD model underlying the algorithm, especially without consideration of the observed cumulative pattern of neutropenia or the platinum-based combination therapy, both impacting neutropenia. This work aimed to externally evaluate the original PK/PD model for potential misspecifications and to refine the PK/PD model while considering the cumulative neutropenia pattern and the combination therapy. An underprediction was observed for the PK (658 samples), the PK parameters, and these parameters were re-estimated using the original estimates as prior information. Neutrophil concentrations (3274 samples) were overpredicted by the PK/PD model, especially for later treatment cycles when the cumulative pattern aggravated neutropenia. Three different modeling approaches (two from the literature and one newly developed) were investigated. The newly developed model, which implemented the bone marrow hypothesis semiphysiologically, was superior. This model further included an additive effect for toxicity of carboplatin combination therapy. Overall, a physiologically plausible PK/PD model was developed that can be used for dose adaptation simulations and prospective studies to further improve paclitaxel/carboplatin combination therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.