Allopatric divergence is one of the principal mechanisms for speciation of macro-organisms. Microbes by comparison are assumed to disperse more freely and to be less limited by dispersal barriers. However, thermophilic prokaryotes restricted to geothermal springs have shown clear signals of geographic isolation, but robust studies on this topic for microbes with less strict habitat requirements are scarce. Furthermore, it has only recently been recognized that homologous recombination among conspecific individuals provides species coherence in a wide range of prokaryotes. Recombination barriers thus may define prokaryotic species boundaries, yet, the extent to which geographic distance between populations gives rise to such barriers is an open question. Here, we investigated gene flow and population structure in a widespread species of pelagic freshwater bacteria, Polynucleobacter paneuropaeus. Through comparative genomics of 113 conspecific strains isolated from freshwater lakes and ponds located across a North-South range of more than 3000 km, we were able to reconstruct past gene flow events. The species turned out to be highly recombinogenic as indicated by significant signs of gene transfer and extensive genome mosaicism. While genomic differences increased with spatial distance on a regional scale (< 170 km), such correlations were mostly absent on larger scales up to 3400 km. We conclude that allopatric divergence in European P. paneuropaeus is minor, and that effective gene flow across the sampled geographic range in combination with a high recombination efficacy maintains species coherence.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Current knowledge on environmental distribution and taxon richness of free-living bacteria is mainly based on cultivation-independent investigations employing 16S rRNA gene sequencing methods. Yet, 16S rRNA genes are evolutionarily rather conserved, resulting in limited taxonomic and ecological resolutions provided by this marker. We used a faster evolving protein-encoding marker to reveal ecological patterns hidden within a single OTU defined by >99% 16S rRNA sequence similarity. The studied taxon, subcluster PnecC of the genus Polynucleobacter, represents a ubiquitous group of planktonic freshwater bacteria with cosmopolitan distribution, which is very frequently detected by diversity surveys of freshwater systems. Based on genome taxonomy and a large set of genome sequences, a sequence similarity threshold for delineation of species-like taxa could be established. In total, 600 species-like taxa were detected in 99 freshwater habitats scattered across three regions representing a latitudinal range of 3400 km (42°N to 71°N) and a pH gradient of 4.2 to 8.6. Besides the unexpectedly high richness, the increased taxonomic resolution revealed structuring of Polynucleobacter communities by a couple of macroecological trends, which was previously only demonstrated for phylogenetically much broader groups of bacteria. A unexpected pattern was the almost complete compositional separation of Polynucleobacter communities of Ca-rich and Ca-poor habitats, which strongly resembled the vicariance of plant species on silicate and limestone soils. The presented new cultivation-independent approach opened a window to an incredible, previously unseen diversity, and enables investigations aiming on deeper understanding of how environmental conditions shape bacterial communities and drive evolution of free-living bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.