Prominent theories of consciousness emphasise different aspects of neurobiology, such as the integration and diversity of information processing within the brain. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from awake volunteers, propofol-anaesthetised volunteers, and patients with disorders of consciousness, in order to identify consciousness-specific patterns of brain function. We demonstrate that cortical networks are especially affected by loss of consciousness during temporal states of high integration, exhibiting reduced functional diversity and compromised informational capacity, whereas thalamo-cortical functional disconnections emerge during states of higher segregation. Spatially, posterior regions of the brain’s default mode network exhibit reductions in both functional diversity and integration with the rest of the brain during unconsciousness. These results show that human consciousness relies on spatio-temporal interactions between brain integration and functional diversity, whose breakdown may represent a generalisable biomarker of loss of consciousness, with potential relevance for clinical practice.
A fundamental question in neuroscience is how brain organisation gives rise to humans' unique cognitive abilities. Although complex cognition is widely assumed to rely on frontal and parietal brain regions, the underlying mechanisms remain elusive: current approaches are unable to disentangle different forms of information processing in the brain. Here, we introduce a powerful framework to identify synergistic and redundant contributions to neural information processing and cognition. Leveraging multimodal data including functional MRI, PET, cytoarchitectonics and genetics, we reveal that synergistic interactions are the fundamental drivers of complex human cognition. Whereas redundant information dominates sensorimotor areas, synergistic activity is closely associated with the brain's prefrontal-parietal and default networks; furthermore, meta-analytic results demonstrate a close relationship between highlevel cognitive tasks and synergistic information. From an evolutionary perspective, the human brain exhibits higher prevalence of synergistic information than non-human primates. At the macroscale, we demonstrate that high-synergy regions underwent the highest degree of evolutionary cortical expansion. At the microscale, human-accelerated genes promote synergistic interactions by enhancing synaptic transmission. These convergent results provide critical insights that synergistic neural interactions underlie the evolution and functioning of humans' sophisticated cognitive abilities, and demonstrate the power of our widely applicable information decomposition framework..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.