A central question in immunology is what features allow the immune system to respond in a timely manner to a variety of pathogens encountered at unanticipated times and diverse body sites. Two decades of advanced and static dynamic imaging methods have now revealed several major principles facilitating host defense. Suborgan spatial prepositioning of distinct cells promotes time‐efficient interactions upon pathogen sensing. Such pre‐organization also provides an effective barrier to movement of pathogens from parenchymal tissues into the blood circulation. Various molecular mechanisms maintain effective intercellular communication among otherwise rapidly moving cells. These and related discoveries have benefited from recent increases in the number of parameters that can be measured simultaneously in a single tissue section and the extension of such multiplex analyses to 3D tissue volumes. The application of new computational methods to such imaging data has provided a quantitative, in vivo context for cell trafficking and signaling pathways traditionally explored in vitro or with dissociated cell preparations. Here, we summarize our efforts to devise and employ diverse imaging tools to probe immune system organization and function, concluding with a commentary on future developments, which we believe will reveal even more about how the immune system operates in health and disease.
Enhancing our understanding of lymphatic anatomy from the microscopic to the anatomical scale is essential to discern how the structure and function of the lymphatic system interacts with different tissues and organs within the body and contributes to health and disease. The knowledge of molecular aspects of the lymphatic network is fundamental to understand the mechanisms of disease progression and prevention. Recent advances in mapping components of the lymphatic system using state of the art single cell technologies, the identification of novel biomarkers, new clinical imaging efforts, and computational tools which attempt to identify connections between these diverse technologies hold the potential to catalyze new strategies to address lymphatic diseases such as lymphedema and lipedema. This manuscript summarizes current knowledge of the lymphatic system and identifies prevailing challenges and opportunities to advance the field of lymphatic research as discussed by the experts in the workshop.
Reference atlases, molecular and spatial maps of mammalian tissues, are critical resources for discovery efforts and translational research. Their utility is dependent on operationalizing the resulting data by identifying cell types, histological patterns, and predictive biomarkers underlying health and disease. The human lymph node (LN) offers a compelling use case because of its importance in immunity, structural and cellular diversity, and neoplastic involvement. One hematological malignancy, follicular lymphoma (FL), evolves from developmentally blocked germinal center B cells residing in and trafficking through these tissues. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Here, we present an integrated portrait of healthy and FL LNs using multiple genomic and advanced imaging technologies. By leveraging the strengths of each platform, we identified several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk of FL patients.
Citation Format: Andrea J. Radtke. A multi-scale, multiomic atlas of human and follicular lymphoma lymph nodes [abstract]. In: Proceedings of the Third AACR International Meeting: Advances in Malignant Lymphoma: Maximizing the Basic-Translational Interface for Clinical Application; 2022 Jun 23-26; Boston, MA. Philadelphia (PA): AACR; Blood Cancer Discov 2022;3(5_Suppl):Abstract nr IA31.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.