Myocardial tissue tagging using complementary spatial modulation of magnetization (CSPAMM) allows detailed assessment of myocardial motion. To capture the complex 3D cardiac motion pattern, multiple 2D tagged slices are usually acquired in different orientations. These approaches are prone to slice misregistration and associated with long acquisition times. In this work, a fast method for acquiring 3D CSPAMM data is proposed that allows measuring deformation of the whole heart in three breath-holds of 18 heartbeats duration each. Three acquisitions are sequentially performed with line tag preparation in each orthogonal direction. Measurement acceleration is achieved by applying localized tagging preparation and a hybrid multishot, segmented echoplanar imaging sequence.
Dyssynchrony patterns in the LV can be quantified globally and regionally by 3D tagging CMR. Combination of viability and dyssynchrony information allows for a comprehensive dyssynchrony quantification in patients with LBBB or post-MI. Future studies are required to test the value of the method to predict responsiveness to resynchronization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.