Global climate models predict temperature rises and changes in precipitation regimes that will shift regional climate zones and influence the viability of agricultural crops in Nepal. Understanding the influence of climate change on local climates and the suitability of specific sites for the production of individual crop types at present and in the future is crucial to increasing local crop resilience and ensuring the long-term viability of plantations-especially of high-value, perennial tree crops that require significant investment. This paper focuses on two cash crops, Macadamia and Juglans. A literature review summarises data on temperature, precipitation, and other macro-and microclimatic requirements of both genera. On this basis, we investigate the short-and long-term suitability of areas in Nepal for production of the two crops by means of a spatial model based on extensive in situ measurements, meteorological data, and climatic layers from the WorldClim dataset. Finally, we track changes in potential cultivation area under four Representative Concentration Pathways. Results show that climatic requirements for the cultivation of Macadamia and Juglans are fulfilled across a large part of Nepal at present and in the future: the total suitable area for both trees shrinks only marginally under all four scenarios. However, suitable areas shift considerably in spatial and altitudinal terms, meaning that some currently productive areas will become unproductive in the future, while currently unproductive ones will become productive. We conclude that the consideration of macro-and microclimatic changes in agricultural planning is essential to long-term agricultural success in Nepal.
Abstract:Global climate models foresee changes in temperature and precipitation regimes that shift regional climate zones and influence the viability of agricultural market systems. Understanding the influence of climate change on the different sub-sectors and functions of a market system is crucial to increasing the systems' climate resilience and to ensuring the long-term viability of the sectors. Our research applies a new approach to climate change analysis to better understand the influence of climate change on each step of an agricultural market system-on its core (processing units, storage facilities and sales) and support functions (sapling supply, research, insurance and agricultural policy). We use spatial climate analyses to investigate current and projected changes in climate for different regions in Nepal. We then analyse the risks and vulnerabilities of the sub-sectors banana, charcoal, coffee, macadamia, orange, vegetables and walnut. Our results show that temperatures and precipitation levels will change differently depending on the climatic regions, and that climate change elicits different responses from the market functions both between and within each of the different sub-sectors. We conclude that climate-related interventions in market systems must account for each different market function's specific response and exposure to climate change, in order to select adaptation measures that ensure long-term climate resilience.
Agricultural innovations are important, especially as climatic conditions around the world have been subject to increasing change over the past decades. Through innovation, farmers can adapt to the changing conditions and secure their livelihoods. In Nepal, 75% of the population depends upon agriculture, which is impacted by climate change, migration, and feminisation. In this context, it is important to understand what drives a household to start agricultural innovation to increase its economic benefits and resilience in the face of multiple pressures. We sought a comprehensive understanding of these drivers by investigating the determinants of rural innovation, using macadamia and walnut trees as examples of novel, potentially commercialised cash crops. After conducting an in-depth household survey that divided farmers into those who cultivate nuts and those who do not, we analysed the socio-economic and cultural characteristics of each category using statistical tests and a multiple logistic regression. Our results show that the individual variables of ethnicity, wealth and "years of experience with fruit trees" correlate significantly with nut cultivation. The results of the multiple regression suggest that "years of experience with tree cultivation" and "having an income through fruit trees" most influence nut cultivation. Overall, we conclude that nut cultivation is an accepted and promising cash crop mostly grown by wealthier households, and that, for poor, landless, or female-headed households to benefit, alternative business models and new policies must be explored and developed. We further suggest that this is also true for other nut or other cash crop trees that have gained recent attention in Nepal such as almond, hazelnut, or pecan farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.