Abstract. Abrupt cold events have been detected in numerous North Atlantic climate records from the Holocene. Several mechanisms have been discussed as possible triggers for these climate shifts persisting decades to centuries. Here, we describe two abrupt cold events that occurred during an orbitally forced transient Holocene simulation using the Community Climate System Model version 3. Both events occurred during the late Holocene (4305-4267 BP and 3046-3018 BP for event 1 and event 2, respectively). They were characterized by substantial surface cooling (−2.3 and −1.8 • C, respectively) and freshening (−0.6 and −0.5 PSU, respectively) as well as severe sea ice advance east of Newfoundland and south of Greenland, reaching as far as the Iceland Basin in the northeastern Atlantic at the climaxes of the cold events. Convection and deep-water formation in the northwestern Atlantic collapsed during the events, while the Atlantic Meridional Overturning Circulation was not substantially affected (weakening by only about 10 % and 5 %, respectively). The events were triggered by prolonged phases of a positive North Atlantic Oscillation that caused substantial changes in the subpolar ocean circulation and associated freshwater transports, resulting in a weakening of the subpolar gyre. Our results suggest a possible mechanism by which abrupt cold events in the North Atlantic region may be triggered by internal climate variability without the need of an external (e.g., solar or volcanic) forcing.
Abstract. Abrupt cold events have been detected in numerous North Atlantic climate records from the Holocene. Several mechanisms have been discussed as possible triggers for these climate shifts persisting decades to centuries. Here, we describe two cold events that occurred during an orbitally forced transient Holocene simulation using the Community 10 Climate System Model version 3. Both events occurred during the late Holocene (event 1 referring to 4305-4267 BP and event 2 referring to 3046-3018 BP) and were characterized by substantial surface cooling (-2.7 and -2.2 °C, respectively) and freshening (-0.7 and -0.6 PSU, respectively) as well as severe sea ice advance east of Newfoundland and south of Greenland. Sea ice even reached the Iceland Basin in the northeastern Atlantic at the climaxes of the cold events. Convection and deep-water formation in the northwestern Atlantic collapsed during the events, while the Atlantic meridional overturning 15 circulation was not significantly affected. The events were triggered by prolonged phases of a positive North Atlantic Oscillation which, through changes in surface winds, caused substantial changes in the sub-polar ocean circulation and associated freshwater transports, resulting in a weakening of the sub-polar gyre. Our results suggest a possible mechanism by which abrupt cold events in the North Atlantic region may be triggered by internal climate variability without the need of an external (e.g. solar or volcanic) forcing. 20
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.