Objective-MicroRNAs are important intracellular regulators of gene expression, but also circulate in the blood being protected by extracellular vesicles, proteins, or high-density lipoprotein (HDL). Here, we evaluate the regulation and potential function of HDL-and low-density lipoprotein-bound miRs isolated from healthy subjects and patients with coronary artery disease. Approach and Results-HDL-bound miRs with known effects in the cardiovascular system were analyzed in HDL isolated from healthy subjects (n=10), patients with stable coronary artery disease (n=10), and patients with an acute coronary syndrome (n=10). In HDL from healthy subjects, miR-223 was detected at concentrations >10 000 copies/µg HDL, and miR-126 and miR-92a at about 3000 copies/µg HDL. Concentrations of most miRs were substantially higher in HDL as compared with low-density lipoprotein. However, HDL-bound miR-223 contributed to only 8% of the total circulating miRs. The signatures of miRs varied only slightly in HDL derived from patients with coronary artery disease. We did not observe a significant uptake of HDL-bound miRs into endothelial cells, smooth muscle cells, or peripheral blood mononuclear cells. However, patient-derived HDL transiently reduced miR expression particularly when incubated with smooth muscle and peripheral blood mononuclear cells. Conclusions-Circulating
IntroductionMicroRNAs (miRNAs) are highly conserved, single-stranded noncoding short RNA molecules (18-24 nucleotides) that regulate gene expression at the posttranscriptional level. miRNAs silence gene expression by inhibiting the translation of proteins from mRNAs or by promoting the degradation of mRNAs. After transcription of the primary miRNA transcripts from the genome, their maturation is mediated by the 2 RNase III endonucleases Dicer and Drosha. Then, mature miRNAs are incorporated into the RNA-induced silencing complex, 1 which mediates the binding of the miRNA to the 3Ј-untranslated region (3Ј-UTR) of the target mRNA leading either to translational repression or degradation of the target mRNA. 2 Because miRNAs control specific expression patterns of target genes, miRNAs represent attractive candidates to interfere with neovascularization.Increasing evidence indicates that miRNAs are important regulators of vascular development and angiogenesis. 3,4 In this context, first studies addressed the function of the miRNAprocessing enzymes Dicer and/or Drosha to explore the general role of miRNAs for angiogenesis. Depletion of Dicer in zebrafish or mice revealed an aberrant vessel growth, and silencing of Dicer in endothelial cells reduced in vitro angiogenesis. [5][6][7] To date, several miRs that regulate endothelial cell function and angiogenesis have been identified, 8 including the pro-angiogenic miRs miR-130a, 9 miR-210, 5,10,11 and miR-378. 12 In addition, miR-126 was shown to regulate vascular integrity and angiogenesis during development and in ischemia-induced angiogenesis. [13][14][15] In contrast, miR-221 and miR-222, 7,16 miR-15 and miR-16, 17,18 and members of the miR-17-92 cluster 19,20 inhibit angiogenesis.In our previous study, we found that the members of the miR-23ϳ27ϳ24 cluster, miR-27a and miR-27b, were highly expressed in endothelial cells. 6 In addition, miR-27b was downregulated after Dicer and Drosha silencing, and inhibition of miR-27b significantly reduced endothelial cell sprouting in vitro, 6 indicating that miR-27b exerts pro-angiogenic effects. Recently, Zhou et al demonstrated that the miR-23ϳ27ϳ24 cluster regulates angiogenesis. 21 In muscle stem cells, miR-27b down-regulates Pax3 expression during myogenic differentiation. 22 Moreover, miR-27 down-regulates Runx1 expression during granulocyte differentiation 23 and the nuclear receptor peroxisome proliferatoractivated receptor-␥ (PPAR-␥) in adipocytes. 24 The myocyte enhancer factor 2C (MEF2C) is another important target of miR-27b during heart development. 25 However, the specific functions and targets of miR-27 in endothelial cells are largely unexplored. As the family members miR-27a and miR-27b differ in only one nucleotide and share the same seed sequence, we investigated the specific role of both family members for the angiogenic activity of endothelial cells and determined the effects on neovascularization. Here we identified the angiogenesis inhibitor semaphorin 6A as a The online version of this article contains a ...
Endothelial progenitor cells (EPCs) contribute to postnatal neovascularization. Risk factors for coronary artery disease reduce the number of EPCs in humans. Since EPC apoptosis might be a potential mechanism to regulate the number of EPCs, we investigated the effects of oxidative stress and HMG-CoA-reductase inhibitors (statins) on EPC apoptosis. Atorvastatin, mevastatin, or VEGF prevented EPC apoptosis induced by H2O2. The antiapoptotic effect was reversed by inhibition of the PI3K/Akt pathway. Forkhead transcription factors (FOXO1, FOXO3a, FOXO4) exert proapoptotic effects and are phosphorylated and, thereby, inactivated by Akt. Therefore, we elucidated the involvement of forkhead transcription factors. Atorvastatin induced the phosphorylation of the predominant forkhead factor FOXO4 in EPCs. In addition, atorvastatin reduced the expression of the proapoptotic forkhead-regulated protein Bim in a PI3K-dependent manner. Consistently, overexpression of FOXO4 activated the Bim promoter as determined by reporter gene expression and stimulated the expression of Bim, resulting in an increased EPC apoptosis. Statins failed to prevent EPC apoptosis induced by overexpression of Bim or nonphosphorylatable FOXO4, suggesting that the protective effects of statins depend on this pathway. In summary, our results show that FOXO-dependent expression of Bim plays a pivotal role for EPC apoptosis. Statins reduce oxidative stress-induced EPC apoptosis, inactivate FOXO4, and down-regulate Bim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.