The oxidation of the conotoxin μ-SIIIA in different ionic liquids was investigated, and the results were compared with those obtained in [C2 mim][OAc]. Conversion of the reduced precursor into the oxidized product was observed in the protic ILs methyl- and ethylammonium formate (MAF and EAf, respectively), whereas choline dihydrogenphosphate and Ammoeng 110 failed to yield folded peptide. However, the quality and yield of the peptide obtained in MAF and EAF were lower than in the case of the product from [C2 mim][OAc]. Reaction conditions (temperature, water content) also had an impact on peptide conversion. A closer look at the activities of μ-SIIIA versions derived from an up-scaled synthesis in [C2 mim][OAc] revealed a significant loss of the effect on ion channel NaV 1.4 relative to the buffer-oxidized peptide, whereas digestion of either μ-SIIIA product by trypsin was unaffected. This was attributed to adherence of ions from the IL to the peptide, because the disulfide connectivity is basically the same for the differentially oxidized μ-SIIIA versions.
Within the last 25 years ionic liquids have written a tremendous success story, which is documented in a nearly uncountable amount of original research papers, reviews, and numerous applications in research and industry. These days, ionic liquids can be considered as a mature class of compounds for many different applications. Frequently, they are used as neoteric solvents for chemical tansformations, and the number of reviews on this field of research is huge. In this focused review, though, we are trying to evaluate the state of the art of ionic liquid chemistry beyond using them simply as solvents for chemical transformations. It is not meant to be a comprehensive overview on the topic; the choice of emphasis and examples rather refects the authors’ personal view on the field. We are especially highlighting fields in which we believe the most fundamental developments within the next five years will take place: biomass processing, (chiral) ionic liquids from natural sources, biotransformations, and organic synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.