The transmembrane glycoprotein gp130 is the common signal transducing receptor subunit of the IL-6-type cytokines. The gp130 extracellular part is predicted to consist of six individual domains. Whereas the role of the three membrane-distal domains (D1–D3) in binding of IL-6 and IL-11 is well established, the function of the membrane-proximal domains (D4–D6) is unclear. Mapping of a neutralizing mAb to the membrane-proximal part of gp130 suggests a functional role of D4–D6 in receptor activation. Individual deletion of these three domains differentially interferes with ligand binding of the soluble and membrane-bound receptors. All deletion mutants do not signal in response to IL-6 and IL-11. The deletion mutants Δ4 and, to a lesser extent, Δ6 are still activated by agonistic monoclonal gp130 Abs, whereas the deletion mutant Δ5 does not respond. Because membrane-bound Δ5 binds IL-6/soluble IL-6R as does wild-type gp130, but does not transduce a signal in response to various stimuli, this domain plays a prominent role in coupling of ligand binding and signal transduction. Replacement of the fifth domain of gp130 by the corresponding domain of the homologous G-CSF receptor leads to constitutive activation of the chimera upon overexpression in COS-7 cells. In HepG2 cells this mutant responds to IL-6 comparable to wild-type gp130. Our findings suggest a functional role of the membrane-proximal domains of gp130 in receptor activation. Thus, within the hematopoietic receptor family the mechanism of receptor activation critically depends on the architecture of the receptor ectodomain.
The transmembrane glycoprotein gp130 is involved in many cytokine-mediated cellular responses and acts therein as the signal transducing receptor subunit. Interleukin-6 (IL-6) and interleukin-11 (IL-11), in complex with their specific alpha-receptors, homodimerize gp130 and, as a consequence, activate the Janus kinase (Jak)/signal transducer and activator of transcription (STAT) signalling pathway in their target cells. So far, it is not clear whether gp130 is bound to these cytokines and their specific alpha-receptor subunits through identical or different epitopes. In order to study the interaction of IL-11 and IL-11R with human gp130 the soluble form of the recently cloned human IL-11R was expressed in baculovirus-infected insect cells. By a coprecipitation binding-assay it is demonstrated that IL-11 and IL-6 compete for binding to gp130. Using deletion and point mutants of gp130 it is shown that IL-11-IL-11R and IL-6-IL-6R recognize overlapping binding motifs on gp130. Moreover, using well-established Jak-deficient cell lines we demonstrate that STAT activation by IL-11 requires Jak1. Taken together, our data support the concept that IL-6 and IL-11 activate gp130 by very similar molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.