This book is a comprehensive introduction to the mathematical theory of vorticity and incompressible flow ranging from elementary introductory material to current research topics. While the contents center on mathematical theory, many parts of the book showcase the interaction between rigorous mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and physical phenomena. The first half forms an introductory graduate course on vorticity and incompressible flow. The second half comprises a modern applied mathematics graduate course on the weak solution theory for incompressible flow.
Understanding collective properties of driven particle systems is significant for naturally occurring aggregates and because the knowledge gained can be used as building blocks for the design of artificial ones. We model self-propelling biological or artificial individuals interacting through pairwise attractive and repulsive forces. For the first time, we are able to predict stability and morphology of organization starting from the shape of the two-body interaction. We present a coherent theory, based on fundamental statistical mechanics, for all possible phases of collective motion.
Image inpainting involves filling in part of an image or video using information from the surrounding area. Applications include the restoration of damaged photographs and movies and the removal of selected objects. In this paper, we introduce a class of automated methods for digital inpainting. The approach uses ideas from classical fluid dynamics to propagate isophote lines continuously from the exterior into the region to be inpainted. The main idea is to think of the image intensity as a 'stream function' for a two-dimensional incompressible flow. The Laplacian of the image intensity plays the role of the vorticity of the fluid; it is transported into the region to be inpainted by a vector field defined by the stream function. The resulting algorithm is designed to continue isophotes while matching gradient vectors at the boundary of the inpainting region. The method is directly based on the Navier-Stokes equations for fluid dynamics, which has the immediate advantage of well-developed theoretical and numerical results. This is a new approach for introducing ideas from computational fluid dynamics into problems in computer vision and image analysis.
The coronavirus disease 2019 (COVID-19) pandemic has placed epidemic modeling at the forefront of worldwide public policy making. Nonetheless, modeling and forecasting the spread of COVID-19 remains a challenge. Here, we detail three regional-scale models for forecasting and assessing the course of the pandemic. This work demonstrates the utility of parsimonious models for early-time data and provides an accessible framework for generating policy-relevant insights into its course. We show how these models can be connected to each other and to time series data for a particular region. Capable of measuring and forecasting the impacts of social distancing, these models highlight the dangers of relaxing nonpharmaceutical public health interventions in the absence of a vaccine or antiviral therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.