Social connection is critical to well-being, yet how the brain reflects our attachment to other people remains largely unknown. We combined univariate and multivariate brain imaging analyses to assess whether and how the brain organizes representations of others based on how connected they are to our own identity. During an fMRI scan, female and male human participants (N = 43) completed a self-and other-reflection task for 16 targets: the self, five close others, five acquaintances, and five celebrities. In addition, they reported their subjective closeness to each target and their own trait loneliness. We examined neural responses to the self and others in a brain region that has been associated with self-representation (mPFC) and across the whole brain. The structure of self-other representation in the mPFC and across the social brain appeared to cluster targets into three social categories: the self, social network members (including close others and acquaintances), and celebrities. Moreover, both univariate activation in mPFC and multivariate self-other similarity in mPFC and across the social brain increased with subjective self-other closeness ratings. Critically, participants who were less socially connected (i.e., lonelier) showed altered self-other mapping in social brain regions. Most notably, in mPFC, loneliness was associated with reduced representational similarity between the self and others. The social brain apparently maintains information about broad social categories as well as closeness to the self. Moreover, these results point to the possibility that feelings of chronic social disconnection may be mirrored by a "lonelier" neural self-representation.
In this study, we assess whether activation of the brain's reward system in response to alcohol advertisements is associated with college drinking. Previous research has established a relationship between exposure to alcohol marketing and underage drinking. Within other appetitive domains, the relationship between cue exposure and behavioral enactment is known to rely on activation of the brain's reward system. However, the relationship between neural activation to alcohol advertisements and alcohol consumption has not been studied in a nondisordered population. Method: In this cross-sectional study, 53 college students (32 women) completed a functional magnetic resonance imaging scan while viewing alcohol, food, and control (car and technology) advertisements. Afterward, they completed a survey about their alcohol consumption (including frequency of drinking, typical number of drinks consumed, and frequency of binge drinking) over the previous month. Results: In 43 participants (24 women) meeting inclusion criteria, viewing alcohol advertisements elicited activation in the left orbitofrontal cortex and bilateral ventral striatum-regions of the reward system that typically activate to other appetitive rewards and relate to consumption behaviors. Moreover, the level of self-reported drinking correlated with the magnitude of activation in the left orbitofrontal cortex. Conclusions: Results suggest that alcohol cues are processed within the reward system in a way that may motivate drinking behavior.
Social connection is critical to well-being, yet how the brain reflects our attachment to other people remains largely unknown. We combined univariate and multivariate brain imaging analyses to assess whether and how the brain organizes representations of others based on how connected they are to our own identity. During an fMRI scan, participants (N=43) completed a self-and other-reflection task for 16 targets: the self, five close others, five acquaintances, and five celebrities. In addition, they reported their subjective closeness to each target and their own trait loneliness. We examined neural responses to the self and others in a brain region that has been associated with self-representation (medial prefrontal cortex; MPFC) and across the whole brain. The structure of self-other representation in the MPFC and across the social brain appeared to cluster targets into three social categories: the self, social network members (including close others and acquaintances), and celebrities. Moreover, both univariate activation in MPFC and multivariate self-other similarity in MPFC and across the social brain increased with subjective self-other closeness ratings. Critically, participants who were less socially connected (i.e. lonelier) showed altered self-other mapping in social brain regions. Most notably, in MPFC, loneliness was associated with reduced representational similarity between the self and others. The social brain apparently maintains information about broad social categories as well as closeness to the self. Moreover, these results point to the possibility that feelings of chronic social disconnection may be mirrored by a 'lonelier' neural selfrepresentation. self | MPFC | social brain | social cognition | social neuroscienceCorrespondence: acourtne@stanford.edu Significance StatementSocial connection is critical to well-being, yet how the brain reflects our attachment to people remains unclear. We found that the social brain stratifies neural representations of people based on our subjective connection to them, separately clustering people who are and are not in our social network. Moreover, the people we feel closest to are represented most closely to ourselves. Finally, lonelier individuals also appeared to have a 'lonelier' neural self-representation in the MPFC, as loneliness attenuated the closeness between self and other neural representations in this region. The social brain appears to map our interpersonal ties, and alterations in this map may help explain why lonely individuals endorse statements such as 'people are around me but not with me.'
Objective: Although an association between exposure to alcohol advertising and underage drinking is well documented, the underlying neurobiological contributions to this association remain largely unexplored. From an epidemiological perspective, identifying the neurobiological plausibility of this exposure–outcome association is a crucial step toward establishing marketing as a contributor to youth drinking and informing public policy interventions to decrease this influence. Method: We conducted a critical review of the literature on neurobiological risk factors and adolescent brain development, social influences on drinking, and neural contributions to reward sensitization and risk taking. By drawing from these separate areas of research, we propose a unified, neurobiological model of alcohol marketing effects on underage drinking. Results: We discuss and extend the literature to suggest that responses in prefrontal–reward circuitry help establish alcohol advertisements as reward-predictive cues that may reinforce consumption upon exposure. We focus on adolescence as a sensitive window of development during which youth are particularly susceptible to social and reward cues, which are defining characteristics of many alcohol advertisements. As a result, alcohol marketing may promote positive associations early in life that motivate social drinking, and corresponding neurobiological changes may contribute to later patterns of alcohol abuse. Conclusions: The neurobiological model proposed here, which considers neurodevelopmental risk factors, social influences, and reward sensitization to alcohol cues, suggests that exposure to alcohol marketing could plausibly influence underage drinking by sensitizing prefrontal–reward circuitry.
Engaging in effortful self-control can sometimes impair people’s ability to resist subsequent temptations. Existing research has shown that when chronic dieters’ self-regulatory capacity is challenged by prior exertion of effort, they demonstrate disinhibited eating and altered patterns of brain activity when exposed to food cues. However, the relationship between brain activity during self-control exertion and subsequent food cue exposure remains unclear. In the present study, we investigated whether individual differences in recruitment of cognitive control regions during a difficult response inhibition task are associated with a failure to regulate neural responses to rewarding food cues in a subsequent task in a cohort of 27 female dieters. During self-control exertion, participants recruited regions commonly associated with inhibitory control, including dorsolateral prefrontal cortex (DLPFC). Those dieters with higher DLPFC activity during the initial self-control task showed an altered balance of food cue elicited activity in regions associated with reward and self-control, namely: greater reward-related activity and less recruitment of the frontoparietal control network. These findings suggest that some dieters may be more susceptible to the effects of self-control exertion than others and, whether due to limited capacity or changes in motivation, these dieters subsequently fail to engage control regions that may otherwise modulate activity associated with craving and reward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.