Lytic phages infect their bacterial hosts, use the host machinery to replicate, and finally lyse and kill their hosts, releasing progeny phages. Various mathematical models have been developed that describe these phage-host viral dynamics. The aim of this study was to determine which of these models best describes the viral dynamics of lytic RNA phage MS2 and its host Escherichia coli C-3000. Experimental data consisted of uninfected and infected bacterial cell densities, free phage density, and substrate concentration. Parameters of various models were either determined directly through other experimental techniques or estimated using regression analysis of the experimental data. The models were evaluated using a Bayesian-based model discrimination technique. Through model discrimination it was shown that phage-resistant cells inhibited the growth of phage population. It was also shown that the uninfected bacterial population was a quasispecies consisting of phage-sensitive and phage-resistant bacterial cells. When there was a phage attack the phage-sensitive cells died out and the phage-resistant cells were selected for and became the dominant strain of the bacterial population.
Lytic phages infect their bacterial hosts, use the host machinery to replicate, and finally lyse and kill their hosts, releasing progeny phages. Various mathematical models have been developed that describe these phage-host viral dynamics. The aim of this study was to determine which of these models best describes the viral dynamics of lytic RNA phage MS2 and its host Escherichia coli C-3000. Experimental data consisted of uninfected and infected bacterial cell densities, free phage density, and substrate concentration. Parameters of various models were either determined directly through other experimental techniques or estimated using regression analysis of the experimental data. The models were evaluated using a Bayesian-based model discrimination technique. Through model discrimination it was shown that phage-resistant cells inhibited the growth of phage population. It was also shown that the uninfected bacterial population was a quasispecies consisting of phage-sensitive and phage-resistant bacterial cells. When there was a phage attack the phage-sensitive cells died out and the phage-resistant cells were selected for and became the dominant strain of the bacterial population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.