In the 2020 Covid-19 pandemic, medical experts (virologists, epidemiologists, public health scholars, and statisticians alike) have become instrumental in suggesting policies to counteract the spread of coronavirus. Given the dangerousness and the extent of the contagion, almost no one has questioned the suggestions that these experts have advised policymakers to implement. Quite often the latter explicitly sought experts' advice and justified unpopular measures (e.g., restricting people's freedom of movement) by referring to the epistemic authority attributed to experts. The main goal of this paper is to analyze the basis of this epistemic authority and the reasons why in this case it has not been challenged, contrary to the widespread tendency to devalue expertise that has been observed in recent years. In addition, in relation to the fact that experts' recommendations are generally technical and supposedly neutral, we note that in the COVID-19 crisis different experts have suggested different public health policies. We consider the British case of herd immunity and the US case of the exclusion of disabled people from medical care. These decisions have strong axiological implications and affect people profoundly in very sensitive domains. Another goal is, therefore, to argue that in such cases experts should justify their recommendations-which effectively become obligations-by the canons of public reason within the political process because when values are involved it is no longer just a matter of finding the “best technical solution,” but also of making discretionary choices that affect citizens and that cannot be imposed solely on the basis of epistemic authority.
Organoids are three-dimensional biological structures grown in vitro from different kinds of stem cells that self-organise mimicking real organs with organ-specific cell types. Recently, researchers have managed to produce human organoids which have structural and functional properties very similar to those of different organs, such as the retina, the intestines, the kidneys, the pancreas, the liver and the inner ear. Organoids are considered a great resource for biomedical research, as they allow for a detailed study of the development and pathologies of human cells; they also make it possible to test new molecules on human tissue. Furthermore, organoids have helped research take a step forward in the field of personalised medicine and transplants. However, some ethical issues have arisen concerning the origin of the cells that are used to produce organoids (ie, human embryos) and their properties. In particular, there are new, relevant and so-far overlooked ethical questions concerning cerebral organoids. Scientists have created so-called mini-brains as developed as a few-months-old fetus, albeit smaller and with many structural and functional differences. However, cerebral organoids exhibit neural connections and electrical activity, raising the question whether they are or (which is more likely) will one day be somewhat sentient. In principle, this can be measured with some techniques that are already available (the Perturbational Complexity Index, a metric that is directly inspired by the main postulate of the Integrated Information Theory of consciousness), which are used for brain-injured non-communicating patients. If brain organoids were to show a glimpse of sensibility, an ethical discussion on their use in clinical research and practice would be necessary.
Human cerebral organoids (HCOs) are three-dimensional in vitro cell cultures that mimic the developmental process and organization of the developing human brain. In just a few years this technique has produced brain models that are already being used to study diseases of the nervous system and to test treatments and drugs. Currently, HCOs consist of tens of millions of cells and have a size of a few millimeters. The greatest limitation to further development is due to their lack of vascularization. However, recent research has shown that human cerebral organoids can manifest the same electrical activity and connections between brain neurons and EEG patterns as those recorded in preterm babies. All this suggests that, in the future, HCOs may manifest an ability to experience basic sensations such as pain, therefore manifesting sentience, or even rudimentary forms of consciousness. This calls for consideration of whether cerebral organoids should be given a moral status and what limitations should be introduced to regulate research. In this article I focus particularly on the study of the emergence and mechanisms of human consciousness, i.e. one of the most complex scientific problems there are, by means of experiments on HCOs. This type of experiment raises relevant ethical issues and, as I will argue, should probably not be considered morally acceptable.
There are many kinds of neural prostheses available or being researched today. In most cases they are intended to cure or improve the condition of patients affected by some cerebral deficiency. In other cases, their goal is to provide new means to maintain or improve an individual's normal performance. In all these circumstances, one of the possible risks is that of violating the privacy of brain contents (which partly coincide with mental contents) or of depriving individuals of full control over their thoughts (mental states), as the latter are at least partly detectable by new prosthetic technologies. Given the (ethical) premise that the absolute privacy and integrity of the most relevant part of one's brain data is (one of) the most valuable and inviolable human right(s), I argue that a (technical) principle should guide the design and regulation of new neural prostheses. The premise is justified by the fact that whatever the coercion, the threat or the violence undergone, the person can generally preserve a “private repository” of thought in which to defend her convictions and identity, her dignity, and autonomy. Without it, the person may end up in a state of complete subjection to other individuals. The following functional principle is that neural prostheses should be technically designed and built so as to prevent such outcomes. They should: (a) incorporate systems that can find and signal the unauthorized detection, alteration, and diffusion of brain data and brain functioning; (b) be able to stop any unauthorized detection, alteration, and diffusion of brain data. This should not only regard individual devices, but act as a general (technical) operating principle shared by all interconnected systems that deal with decoding brain activity and brain functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.