MiMiC is a highly flexible, extremely scalable multiscale modeling framework. It couples the CPMD (quantum mechanics, QM) and GROMACS (molecular mechanics, MM) codes. The code requires preparing separate input files for the two programs with a selection of the QM region. This can be a tedious procedure prone to human error, especially when dealing with large QM regions. Here, we present MiMiCPy, a user-friendly tool that automatizes the preparation of MiMiC input files. It is written in Python 3 with an object-oriented approach. The main subcommand PrepQM can be used to generate MiMiC inputs directly from the command line or through a PyMOL/VMD plugin for visually selecting the QM region. Many other subcommands are also provided for debugging and fixing MiMiC input files. MiMiCPy is designed with a modular structure that allows seamless extensions to new program formats depending on the requirements of MiMiC.
Inorganic nanoparticles are gaining increasing attention as drug carriers because they respond to external physical stimuli, allowing to combine therapy with diagnosis. Their drawback is a low drug loading capacity,...
Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data.
Metal ions are essential cofactors for many proteins. In fact, currently, about half of the structurally characterized proteins contain a metal ion. Metal ions play a crucial role for many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties e.g. as Lewis acid. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc that can often not be accurately described using a classical force field. In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the identification and localization of zinc and other metal ions in experimental and computationally predicted protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate metal ion location predictor to date outperforming geometric predictors including Metal1D by a wide margin using a single structure as input. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. The predicted metal ion locations for Metal3D are within 0.70 +- 0.64 Å of the experimental locations with half of the sites below 0.5 Å. Metal3D predicts a global metal density that can be used for annotation of structures predicted using e.g. AlphaFold2 and a per residue metal density that can be used in protein design workflows for the location of suitable metal binding sites and rotamer sampling to create novel metalloproteins. Metal3D is available as easy to use webapp, notebook or commandline interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.