A recently introduced bond–bond formulation of the intermolecular interaction has been extended to six‐atom systems to the end of assembling a new potential energy surface (PES) and has been incorporated into a grid empowered simulator able to handle the modeling of the CO2 + CO2 processes. The proposed PES is full dimensional and accounts for the dependence of the intermolecular interaction on some basic physical properties of the colliding partners, including modulations induced by the monomer deformation. The used analytical formulation of the interaction involves a limited number of parameters, each having a clear physical meaning. Guess values for these parameters can also be obtained from analytical correlation formulae. Such estimates can then be fine tuned by exploiting experimental and theoretical information. The resulting PES well describes stretched and bent asymptotic CO2 monomers as well as the CO2–CO2 interaction in the most and less stable configurations. On this potential massive quasiclassical elastic and inelastic detailed scattering trajectories have been integrated, by exploiting the innovative computational technologies of the grid. The efficiency of the approach used and the reliability of the estimates of the dynamical properties obtained in this way is such that we can now plan a systematic evaluation of the state specific rate coefficient matrix elements needed for space craft reentry modeling. Here, we present probabilities and cross sections useful to rationalize some typical mechanisms characterizing the vibrational transitions of the CO2 + CO2 system on the flexible monomer proposed PES. On such PES, the key dynamical outcomes are: (a) there is a strong energy interchange between symmetric stretching of the reactants and bending of the products (and viceversa) while asymmetric stretching is strongly adiabatic (b) reactant energy is more efficiently allocated (with respect to the rigid monomers PES) as product vibration when reactant stretching modes are excited while the contrary is true when the reactant bending mode is excited. © 2012 Wiley Periodicals, Inc.
A quantum chemical exploration is reported on the interaction potentials of H2O2 with the rare gases, He, Ne, Ar, Kr, and Xe. Hydrogen peroxide (the simplest example of chiral molecule in its equilibrium geometry) is modeled as rigid except for the torsional mode around the O-O bond. However, on the basis of previous work (Maciel, G. S.; et al. Chem. Phys. Lett. 2006 432, 383), the internal mode description is based, rather than on the vectors of the usual valence picture, on the orthogonal local representation, which was demonstrated useful for molecular dynamics simulations, because the torsion around the vector joining the center-of-mass of the two OH radicals mimics accurately the adiabatic reaction path for chirality changing isomerization, following the torsional potential energy profile from equilibrium through the barriers for the trans and cis geometries. The basic motivation of this work is the determination of potential energy surfaces for the interactions to be used in classical and quantum simulations of molecular collisions, specifically those leading to chirality changes of possible relevance in the modeling of prebiotic phenomena. Particular attention is devoted to the definition of coordinates and expansion formulas for the potentials, allowing for a faithful representation of geometrical and symmetry properties of these systems, prototypical of the interaction of an atom with a floppy molecule.
The structural and energetic properties of the H 2 S 2 molecule have been studied using density functional theory, second-order Møller-Plesset method, and coupled cluster theory with several basis sets. In order to extend previous work on intra-and intermolecular dynamics of the chirality changing modes for H 2 O 2 and its derivatives, our focus has been on the torsion around the S-S bond, along with an extensive characterization of the intermolecular potentials of H 2 S 2 with the rare gases ͑He, Ne, Ar, and Kr͒. Use is made of previously defined coordinates and expansion formulas for the potentials which allow for a faithful representation of geometrical and symmetry properties of these systems that involve the interaction of an atom with a floppy molecule. The potential energy surfaces obtained in this work are useful for classical and quantum mechanical simulations of molecular collisions responsible for chirality changing processes of possible interest in the modeling of prebiotic phenomena.
The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong nonequilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards the equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electronimpact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N 2 ,O 2 ,NO), Mars (CO 2 ,CO,N 2) and Jupiter (H 2 ,He) atmospheres are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.