SummaryA protocol for establishment and high-frequency Agrobacterium-mediated transformation of morphogenic Arabidopsis cell suspensions was developed to facilitate saturation mutagenesis and identification of plant genes by sequenced T-DNA tags. Thirty-two self-circularized T-DNA tagged chromosomal loci were isolated from 21 transgenic plants by plasmid rescue and long-range inverse polymerase chain reaction (LR-iPCR). By bidirectional sequencing of the ends of T-DNA-linked plant DNA segments, nine T-DNA inserts were thus localized in genes coding for the Arabidopsis ASK1 kinase, cyclin 3b, Jdomain protein, farnesyl diphosphate synthase, ORF02, an unknown EST, and homologues of a copper amine oxidase, a peripheral Golgi protein and a maize pollenspecific transcript. In addition, 16 genes were identified in the vicinity of sequenced T-DNA tags illustrating the efficiency of genome analysis by insertional mutagenesis.
SummaryTo assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection. The average T-DNA copy number estimated by Southern DNA hybridization is 2.4, as over 50% of the insertion loci contain tandem T-DNA copies. The collection is pooled in two arrays providing 40 PCR templates, each containing DNA from either 4000 or 5000 individual plants. A rapid and sensitive PCR technique using high-quality template DNA accelerates the identification of T-DNA tagged genes without DNA hybridization. The PCR screening is performed by agarose gel electrophoresis followed by isolation and direct sequencing of DNA fragments of amplified T-DNA insert junctions. To estimate the mutation recovery rate, 39 700 lines have been screened for T-DNA tags in 154 genes yielding 87 confirmed mutations in 73 target genes. Screening the whole collection with both T-DNA border primers requires 170 PCR reactions that are expected to detect a mutation in a gene with at least twofold redundancy and an estimated probability of 77%. Using this technique, an M 2 family segregating a characterized gene mutation can be identified within 4 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.