Adjuvant-induced arthritis is an experimental immunopathology in rats that is often used as a model for studying autoimmune chronic inflammation and inflammatory cachexia. In these animals oxidative stress is quite pronounced in the articular inflammation sites. The purpose of this study was to evaluate oxidative stress in the liver of arthritic rats in which morphological and metabolic alterations have been reported to occur. Oxidative injury parameters, levels and production of reactive oxygen species (ROS), and antioxidant parameters were measured in the total liver homogenate and in subcellular fractions, namely cytosol, mitochondria, and peroxisomes. Arthritic rats presented higher levels of ROS than controls in the total homogenate (46% higher) and in all subcellular fractions (51, 38, and 55% higher for mitochondria, peroxisome, and cytosol, respectively). Arthritic rats also presented higher levels of protein carbonyl groups in the total homogenate (75%) and in all subcellular fractions (189, 227, and 260%, respectively, for mitochondria, peroxisomes, and cytosol). The TBARS levels of arthritic rats were more elevated in the total homogenate (36%), mitochondria (20%), and peroxisomes (16%). Arthritic rats also presented higher levels of NO markers in the peroxisomes (112%) and in the cytosol (35%). The catalase activity of all cell compartments was strongly diminished (between 77 and 87%) by arthritis, and glutathione peroxidase activities were diminished in the mitochondria (33.7%) and cytosol (41%). The cytosolic glucose-6-phosphate dehydrogenase activity, on the other hand, was increased (62.9%), the same happening with inducible peroxisomal NO synthase (119.3%). The superoxide dismutase and glutathione reductase activities were not affected. The GSH content was diminished by arthritis in all cellular compartments (50 to 59% diminution). The results reveal that the liver of rats with adjuvant-induced arthritis presents a pronounced oxidative stress and that, in consequence, injury to lipids and proteins is highly significant. The higher ROS content of the liver of arthritic rats seems to be the consequence of both a stimulated pro-oxidant system and a deficient antioxidant defense with a predominance of the latter as indicated by the strongly diminished activities of catalase and glutathione peroxidase.
This is a research letter in which for the first time a comparison is made of different procedures to prepare fatty acid containing solutions, to be used in the study of lipotoxicity in pancreatic islet
Chronic obstructive pulmonary disease (COPD) is highly prevalent and its pathogenesis is still not completely clarified. Clinically stable patients (n=21) and healthy subjects (n=24) were studied for blood markers of oxidative injury and antioxidant status. The plasma concentration of protein carbonyls was significantly increased in COPD patients, both ex-smokers (0.76 +/- 0.28 nmol mg(-1)) and smokers (0.99 +/- 020 nmol mg(-1)) versus controls (0.49 +/- 0.14 nmol mg(-1)) . The concentration of total thiols was slightly enhanced in plasma of the COPD patients (ex-smokers 492 +/- 23 micromol 1(-1) and smokers 505 +/- 36 micromol 1(-1) versus controls 450 +/- 67 micromol 1(-1); p < 0.05). The activity of the antioxidant enzyme superoxide dismutase was increased in erythrocytes (activity in U g(-1) haemoglobin; ex-smokers 4460 +/- 763 and smokers 4114+/- 1060 versus 3015 +/- 851 in controls; p > 0.01), while glutathione peroxidase activity was decreased in total blood (activity in U g(-1) haemoglobin: ex-smokers 27 +/- 9 and smokers 23 +/- 9 versus 47 +/- 25; p < 0.01). Lower levels of selenium in plasma were also found for COPD patients (concentration in mg 1(-1): ex-smokers 0.030 +/- 0.019 and smokers 0.032 +/- 0.024 versus 0.058 +/- 0.023 in controls; p < 0.01), being more evident in those with very low levels of arterial oxygen pressure. In addition, the levels of potassium and rubidium were increased in blood cells of the patient group. All these changes might reflect oxidant damage and an altered electrolytic homeostasis, and can be interpreted as markers of COPD rather than as indicators of smoking habits.
Abstract:The fruit extracts of Citrus aurantium (bitter orange) are traditionally used as weight-loss products and as appetite supressants. An important fruit component is p-synephrine, which is structurally similar to the adrenergic agents. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of the C. aurantium extract on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways, including oxygen uptake and perfusion pressure. The C. aurantium extract and p-synephrine increased glycogenolysis, glycolysis, oxygen uptake and perfusion pressure. These changes were partly sensitive to -and -adrenergic antagonists. p-Synephrine (200 M) produced an increase in glucose output that was only 15% smaller than the increment caused by the extract containing 196 M p-synephrine. At low concentrations the C. aurantium extract tended to increase gluconeogenesis, but at high concentrations it was inhibitory, opposite to what happened with p-synephrine. The action of the C. aurantium extract on liver metabolism is similar to the well known actions of adrenergic agents and can be partly attributed to its content in p-synephrine. Many of these actions are catabolic and compatible with the weight-loss effects usually attributed to C. aurantium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.