Purpose: We have reported previously that intratumoral microvessel density (MVD) is a significant prognostic indicator of event-free survival in the Ewing's sarcoma family of tumors (ESFT). Here, the angiogenic growth factor expression profile and its relationship with MVD has been investigated in ESFT.
Experimental Design and Results: Using ESFT model systems, the potential of these factors as therapeutic targets has been evaluated. A significant correlation (P = 0.02) was observed between vascular endothelial growth factor (VEGF) expression and MVD, consistent with the hypothesis that VEGF regulates the development of microvessels in ESFT. There was no correlation between MVD and any of the other growth factors studied. All six ESFT cell lines studied produced and secreted VEGF; five of six cell lines also secreted placental growth factor, one cell line (A673) at high levels. Tumor conditioned medium induced proliferation of human umbilical vein endothelial cells. Expression of VEGF receptors Flt-1 and Flk-1/KDR was heterogeneous across the cell lines. Both receptor tyrosine kinase inhibitors SU6668 (targets Flk-1/KDR, platelet-derived growth factor receptor-β, and fibroblast growth factor receptor 1) and SU5416 (targets Flk-1/KDR) as well as anti-VEGF agents rhuMAb-VEGF (bevacizumab) and VEGF Trap delayed s.c. growth of ESFT in mice compared with untreated groups: SU6668 (100 mg/kg/d), SU5416 (25 mg/kg/d), rhuMAb-VEGF (10 mg/kg twice weekly), and VEGF Trap (2.5 or 25 mg/kg twice weekly).
Conclusions: These data suggest that VEGF is the single most important regulator of angiogenesis in ESFT and may be exploited for therapeutic advantage.
Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by blocking cationic amino acid transporter 1 (CAT-1)-dependent arginine uptake in vitro or therapeutic depletion of arginine by pegylated-recombinant arginase BCT-100, significantly delayed tumor development and prolonged murine survival. Tumor cells polarized infiltrating-monocytes to a M1-macrophage phenotype, which released IL-1β and TNF-α in a RAC-alpha serine/threonine-protein kinase (AKT)-dependent manner. IL-1β and TNF-α established a feedback loop to upregulate ARG2 expression via p38 and extracellular regulated kinases 1/2 (ERK1/2) signalling in neuroblastoma and neural crest-derived cells. Proteomic analysis revealed that enrichment of IL-1β and TNF-α in stage IV human tumor microenvironments was associated with a worse prognosis. These data thus describe an immune-metabolic regulatory loop between tumor cells and infiltrating myeloid cells regulating ARG2, which can be clinically exploited.
Poly C binding protein 1 (PCBP) is involved in the transcriptional regulation of neuronal mu-opioid receptor gene. In this study, we examined the molecular basis of PCBP cellular/nuclear localization in neuronal cells using EGFP fusion protein. PCBP, containing three KH domains and a variable domain, distributed in cytoplasm and nucleus with a preferential nuclear expression. Domain-deletional analyses suggested the requirement of variable and KH3 domains for strong PCBP nuclear expression. Within the nucleus, a low nucleolar PCBP expression was observed, and PCBP variable domain contributed to this restricted nucleolar expression. Furthermore, the punctate nuclear pattern of PCBP was correlated to its single-stranded (ss) DNA binding ability, with both requiring cooperativity of at least three sequential domains. Collectively, certain PCBP domains thus govern its nuclear distribution and transcriptional regulatory activity in the nucleus of neurons, whereas the low nucleolar expression implicates the disengagement of PCBP in the ribosomal RNA synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.