Rationale: Reducing asthma exacerbation frequency is an important criterion for approval of asthma therapies, but the clinical features of exacerbation-prone asthma (EPA) remain incompletely defined.Objectives: To describe the clinical, physiologic, inflammatory, and comorbidity factors associated with EPA.Methods: Baseline data from the NHLBI Severe Asthma Research Program (SARP)-3 were analyzed. An exacerbation was defined as a burst of systemic corticosteroids lasting 3 days or more. Patients were classified by their number of exacerbations in the past year: none, few (one to two), or exacerbation prone (>3). Replication of a multivariable model was performed with data from the SARP-1 1 2 cohort.Measurements and Main Results: Of 709 subjects in the SARP-3 cohort, 294 (41%) had no exacerbations and 173 (24%) were exacerbation prone in the prior year. Several factors normally associated with severity (asthma duration, age, sex, race, and socioeconomic status) did not associate with exacerbation frequency in SARP-3; bronchodilator responsiveness also discriminated exacerbation proneness from asthma severity. In the SARP-3 multivariable model, blood eosinophils, body mass index, and bronchodilator responsiveness were positively associated with exacerbation frequency (rate ratios [95% confidence interval],
Background Severe asthma is a complex heterogeneous disease associated with older age and obesity. The presence of eosinophilic (type 2) inflammation in some but not all patients with severe asthma predicts responsiveness to current treatments, but new treatment approaches will require better understanding of non-type 2 mechanisms of severe asthma. We considered the possibility that systemic inflammation - which occurs in subgroups of obese and older patients - modifies asthma to make it worse. Interleukin 6 (IL6) is a biomarker of systemic inflammation and metabolic dysfunction, and we aimed to explore the relationship between IL6, metabolic dysfunction, and asthma severity. Methods We generated a reference range in health for plasma IL6 in a cohort of healthy controls (n=93). We compared the clinical characteristics of asthmatics with plasma IL6 levels below and above the upper limit of normal (“IL6 low” and “IL-high” asthma) in two asthma cohorts - predominantly non-severe asthmatics recruited at the University of California San Francisco (UCSF)(n=249) and predominantly severe asthmatics recruited by the Severe Asthma Research Program (SARP)(n=387). Findings The upper 95th centile value for plasma IL6 in the healthy cohort was 3·1pg/mL, and 14% of UCSF cohort and 26% of the SARP cohort had plasma IL6 levels above this upper limit. The “IL6-high” patients in both asthma cohorts had a significantly higher body mass index and a higher prevalence of metabolic disease than the IL6-low patients (all p values < 0.01). IL6-high patients also had significantly lower lung function and more frequent asthma exacerbations than IL6-low patients (all p values < 0·01). Although 75% of IL6-high asthmatics were obese, 63% of obese patients were IL6-low. Among obese patients, the forced expired volume in one second (FEV1) was significantly lower in IL6-high than in IL6-low patients (mean FEV1 70·8 [S.D. 19·5] vs. 78·1 [19·7] % predicted, p = 0·002), and the percentage of patients reporting an asthma exacerbation in the past 1-2 years was higher in IL6-high than in IL6-low patients (66 vs. 48%, p = 0·003). Among non-obese asthmatics, FEV1% and asthma exacerbation outcomes were also significantly worse in IL6-high than in IL6-low patients (mean FEV1 66·4 [SD 23·1] vs. 83·2 [20·4] % predicted, p< 0·01; 59 vs. 34 %, p=0·008). Interpretation Systemic IL6 inflammation and clinical features of metabolic dysfunction - occurring most commonly among a subset of obese asthmatics but also in a small subset of non-obese patients - is associated with more severe asthma. IL6 inhibitors or treatments that improve metabolic dysfunction represent rational clinical trials to pursue for a subset of patients with severe asthma, and plasma IL6 is a biomarker that could guide patient stratification.
Rationale: Extracellular DNA (eDNA) and neutrophil extracellular traps (NETs) are implicated in multiple inflammatory diseases. NETs mediate inflammasome activation and IL-1b secretion from monocytes and cause airway epithelial cell injury, but the role of eDNA, NETs, and IL-1b in asthma is uncertain. Objectives: To characterize the role of activated neutrophils in severe asthma through measurement of NETs and inflammasome activation. Methods: We measured sputum eDNA in induced sputum from 399 patients with asthma in the Severe Asthma Research Program-3 and in 94 healthy control subjects. We subdivided subjects with asthma into eDNA-low and-high subgroups to compare outcomes of asthma severity and of neutrophil and inflammasome activation. We also examined if NETs cause airway epithelial cell damage that can be prevented by DNase. Measurements and Main Results: We found that 13% of the Severe Asthma Research Program-3 cohort is "eDNA-high," as defined by sputum eDNA concentrations above the upper 95th percentile value in health. Compared with eDNA-low patients with asthma, eDNAhigh patients had lower Asthma Control Test scores, frequent history of chronic mucus hypersecretion, and frequent use of oral corticosteroids for maintenance of asthma control (all P values ,0.05). Sputum eDNA in asthma was associated with airway neutrophilic inflammation, increases in soluble NET components, and increases in caspase 1 activity and IL-1b (all P values ,0.001). In in vitro studies, NETs caused cytotoxicity in airway epithelial cells that was prevented by disruption of NETs with DNase. Conclusions: High extracellular DNA concentrations in sputum mark a subset of patients with more severe asthma who have NETs and markers of inflammasome activation in their airways.
The phenotypic features of asthma differ by severity and with advancing age. With advancing age, patients with severe asthma are more obese, have greater airflow limitation, less allergen sensitization, and variable type 2 inflammation. Novel mechanisms besides type 2 inflammatory pathways may inform the severe asthma phenotype with advancing age.
Despite ICS therapy, many asthmatic patients have persistent airway type 2 inflammation (srT2-high asthma), and these patients are older and have more severe disease. Body weight and age modify the performance of blood-based biomarkers of airway type 2 inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.