Rationale: Extracellular DNA (eDNA) and neutrophil extracellular traps (NETs) are implicated in multiple inflammatory diseases. NETs mediate inflammasome activation and IL-1b secretion from monocytes and cause airway epithelial cell injury, but the role of eDNA, NETs, and IL-1b in asthma is uncertain. Objectives: To characterize the role of activated neutrophils in severe asthma through measurement of NETs and inflammasome activation. Methods: We measured sputum eDNA in induced sputum from 399 patients with asthma in the Severe Asthma Research Program-3 and in 94 healthy control subjects. We subdivided subjects with asthma into eDNA-low and-high subgroups to compare outcomes of asthma severity and of neutrophil and inflammasome activation. We also examined if NETs cause airway epithelial cell damage that can be prevented by DNase. Measurements and Main Results: We found that 13% of the Severe Asthma Research Program-3 cohort is "eDNA-high," as defined by sputum eDNA concentrations above the upper 95th percentile value in health. Compared with eDNA-low patients with asthma, eDNAhigh patients had lower Asthma Control Test scores, frequent history of chronic mucus hypersecretion, and frequent use of oral corticosteroids for maintenance of asthma control (all P values ,0.05). Sputum eDNA in asthma was associated with airway neutrophilic inflammation, increases in soluble NET components, and increases in caspase 1 activity and IL-1b (all P values ,0.001). In in vitro studies, NETs caused cytotoxicity in airway epithelial cells that was prevented by disruption of NETs with DNase. Conclusions: High extracellular DNA concentrations in sputum mark a subset of patients with more severe asthma who have NETs and markers of inflammasome activation in their airways.
Dopamine is currently considered to contribute to the pathophysiology of migraine, and dopamine receptor antagonists are prescribed in the treatment of acute migraine. Laboratory data suggest that the role of dopamine in migraine is more complex, perhaps due to the multiple receptors and levels of the brain involved in the disorder. These data suggest a reappraisal of dopaminergic therapeutic targets in migraine as our understanding of the role of this important biogenic amine is better characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.