We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and readout.
We use a transfer-matrix method to study the disorder-induced metal-insulator transition. We take isotropic nearest-neighbor hopping and an onsite potential with uniformly distributed disorder. Following the previous work done on the simple-cubic lattice, we perform numerical calculations for the body-centered cubic and face-centered cubic lattices, which are more common in nature. We obtain the localization length from calculated Lyapunov exponents for different system sizes. This data is analyzed using finite-size scaling to find the critical parameters. We create an energy-disorder phase diagram for both lattice types, noting that it is symmetric about the band center for the body-centered cubic lattice but not for the face-centered cubic lattice. We find a critical exponent of approximately 1.5-1.6 for both lattice types for transitions occurring either at fixed energy or at fixed disorder, agreeing with results previously obtained for other systems belonging to the same orthogonal universality class. We notice an increase in critical disorder with the number of nearest neighbors, which agrees with intuition.
We consider a Fermi gas with short-range attractive interactions that is confined along one direction by a tight harmonic potential. For this quasi-two-dimensional (quasi-2D) Fermi gas, we compute the pressure equation of state, radio frequency spectrum, and the superfluid critical temperature Tc using a mean-field theory that accounts for all the energy levels of the harmonic confinement. Our calculation for Tc provides a natural generalization of the Thouless criterion to the quasi-2D geometry, and it correctly reduces to the 3D expression derived from the local density approximation in the limit where the confinement frequency ωz → 0. Furthermore, our results suggest that Tc can be enhanced by relaxing the confinement and perturbing away from the 2D limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.